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EXECUTIVE SUMMARY 

 
This report describes test problems that can be used to validate numerical simulations of nuclear 
explosion fields. A particular emphasis is placed on turbulent mixing and other “non-ideal” 
effects (thermal layer precursors, turbulent wall jets and dusty boundary layer flows) created by 
the interaction of the explosion wave with ground surfaces. The importance of such effects is 
illustrated by a comparison of the peak stagnation pressure versus ground range. In the precursor 
regime ( HOB < 700 ft /KT1/3  and GR <1100 ft /KT1/3 ) stagnation pressures from non-ideal 
effects are an order of magnitude larger that the corresponding ideal-surface case. Seven 
problems are considered:  
 (i) blast waves from nuclear explosions,  
 (ii) blast wave reflections from ideal surfaces,  
 (iii) blast wave reflections from ground surfaces,  
 (iv) spherical mixing layers,  
 (v) Kelvin-Helmholtz mixing layers,  
 (vi) wall-bounded mixing layers,  
 (vii) height of burst curves.  
The need for additional work is described in the Recommendations section, which includes tasks 
in support of the V&V, Complex Hydro and Output and Effects Programs.  
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Introduction 

 
 This manuscript describes a framework for validating LLNL computer codes for 
simulating nuclear explosion fields. A particular emphasis is placed on turbulent mixing and 
“non-ideal” effects1,23 resulting from the interaction of an explosion wave with real surfaces. 
These problems have traditionally proved difficult to validate, even though there appears to be a 
wealth of information available.  
 
The simplest case is the reflection of a spherical blast wave from an ideal surface, shown in Fig. 
1. For the considered height-of-burst (HOB), a simple Mach stem structure (incident shock, 
Mach stem, reflected shock and slip line) has formed by the time (0.77 s) depicted in Fig. 1a. 
This blast-wave-induced Mach stem structure has been visualized by a shadow photograph 
presented in Fig. 1b. 
 
One of the principal differences between blast waves from nuclear charges versus high explosive 
(HE) charges is the high temperature in the nuclear fireball (~107 K) versus the HE fireball 
(~3,000 K). The nuclear fireball emits thermal radiation that is absorbed by the ground, forming 
a high-sound-speed layer on the surface. The reflected shock propagates faster in the hot layer 
than in the air above it—forming a precursor shock that out-runs the main blast wave, as shown 
in Fig. 2. Therefore the flow near the surface is dramatically modified compared to the ideal-
surface case shown in Fig. 1. 
 
If the reflecting surface is actually a ground surface, then the high-speed flow near the surface 
forms a high-speed wall jet that entrains dust into the flow, forming a turbulent dusty boundary 
layer (Fig. 3). The flow near the ground is dramatically different than that found in reflections 
from ideal surfaces (Fig. 1) and hot surfaces (Fig. 2). For example, the peak stagnation pressure 
for a nuclear HOB is shown in Fig. 4 as a function of ground range (GR). It shows that the peak 
stagnation pressure for a nuclear HOB can be an order of magnitude larger than that from a blast 
reflection from an ideal surface. And it is the stagnation pressure that is the relevant parameter 
for loading above ground structures. This is not taken into account in weapon effects models [1] 
which are based on ideal-surface HOB curves (see Problem 7). 
 
In this manuscript, we have identified seven problems related to the above-described flow fields: 

• Problem 1. Blast Waves from Nuclear Explosions: early-time radiation hydrodynamics 
flow that evolves into a gasdynamic explosion field. The principal diagnostic is the so-
called free air curve (peak over-pressure versus radius from the explosion center). 

• Problem 2. Blast Wave Reflections from Ideal Surfaces: regular and Mach reflections 
from wedges, and the reflection of an HE-driven blast wave from a surface are compared 
with experimental data. 

                                                
1 Samuel Glasstone (Editor), Effects of Nuclear Weapons, US Atomic Energy Commission, April 1962, 730 pp. 
2 A. L. Kuhl, Airblast Effects from Nuclear Explosions over Real Surfaces, DNUG Meeting, April 2012 (in press).  
3 A. L. Kuhl, P. Wang, Nuclear Explosion at 500 feet above a Ground Surface, NECDC 2012 Proceedings (in press) 
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• Problem 3. Blast Wave Reflections from Ground Surfaces: precursor shock structure, 
turbulent wall jet and dusty boundary layer flow.  

• Problem 4. Spherical Mixing Layers: evolution of the turbulent flow, mixing layer 
growth, mean and root-mean-squared (RMS) profiles in the mixing layer, decay of the 
turbulent kinetic energy, evolution of the turbulent kinetic energy spectra (both rotational 
and dilatational components). 

• Problem 5. Kelvin-Helmholz Mixing Layers: transition in free shear layers are compared 
with the fundamental experiments of Brown & Roshko (1974) and Oster & Wignanski 
(1982). 

• Problem 6. Shock-induced Wall Mixing Layers: transition in dusty boundary layers and 
dense-gas boundary layers is compared with experiments. 

• Problem 7. Height of Burst Curves: HOB curves for HE-driven blast wave reflections 
from smooth versus ideal surfaces (Reichenbach & Kuhl, 1991) are compared with 
nuclear HOB curves for ideal surfaces (Carpenter, 1994). 

 
We hope that this manuscript will serve as benchmark for validating hydro-code simulations of 
nuclear explosions and their reflections from various surfaces. 
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(a) Numerical Simulation (t = 0.77 s)3 

 
 

(b) Shadow Photograph (courtesy of EMI) 

   
 

Figure 1. Blast reflection from an ideal surface. 
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(a) Numerical Simulation3 

 
 

(b) Shadow Photograph (courtesy of EMI) 

        
 

Figure 2. Blast wave reflection from a hot surface.  
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(a) Numerical Simulation3 

 
 

(b) Shadow Photograph (courtesy of EMI) 

                
 

Figure 3. Blast wave reflection from a ground surface.  
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Figure 4. The peak stagnation pressure ( p

0
) as a function of ground range (GR) for a height of 

burst (HOB) explosion is compared with that from an ideal surface burst3. The airblast-
precursor-induced wall jet increases the stagnation pressure on above-ground structures by about 
factor of 10, compared to the ideal surface case (for GR <1000m ). This “non-ideal” effect is not 
taken into account in previous studies. 
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Problem 1: Blast Waves from Nuclear Explosions 

 
Introduction 
 
The theoretical description of blast waves from nuclear charges has been predicted by Hal Brode 
using a one-dimensional Lagrangian radiation-hydrodynamics code with a von Neumann 
artificial viscosity to capture the shock [1]-[4], [8]-[9]. The solution was scaled to 1 kiloton using 
cube-root scaling and published in the Annual Reviews of Nuclear Science in 1968. Much of that 
article was used by Samuel Glasstone in his famous monograph: Review of Nuclear Weapons 
Effects [5] published in 1962, and by Philip J. Dolan, Editor of Effects Manual 1 (EM-1) Part I: 
Phenomenology [22] published by the Defense Nuclear Agency in 1972. 
 
The flow field from a nuclear explosion is quite accurately described by the “point explosion 
solution”, first discovered by Academician Leonid Ivanovich Sedov [16-17] in 1946, and 
independently by Sir Geoffrey I. Taylor [12-13] in 1950. This is one of the prominent similarity 
solutions found in Sedov’s seminal monograph: Similarity and Dimensional Analysis in 
Mechanics—the definitive work on this subject. Its mathematical underpinnings were provided 
by Bridgeman’s famous book: Dimensional Analysis published in 1922. This method was used 
by Oppenheim et al. [11] to predict all possible self-similar blast waves bounded by a strong 
shock in 1972. Other similarity solutions can be found in Stanyukovich’s book: Unsteady Motion 
of Continuous Media [18-19] published in 1960. 
 
The point-source solution was extended to low pressures by John von Neumann in 1941. Shock 
tracking was used to accurately capture the shock jump conditions in the 1D Lagrangian 
simulation [14]. Originally this manuscript (NDRC Div. B, Report AM-9, 1941) was classified; 
in 1955 it was published under the title “Blast Wave Calculation” [15]. 
 
Radiation Hydrodynamics Solution 
 
The formation of a blast wave from a nuclear explosion is illustrated in Fig. 1. The time-distance 
diagram shows the propagation and decay of the radiation front and the case shock formed by the 
expanding bomb vapors. The case shock overtakes the radiation front at t = 0.1ms /KT1/3  and 
R = 8m /KT

1/3 ; thereafter the flow field is accurately represented by the point source solution, as 
shown in Fig. 2. The fireball diameter from the nuclear simulation is about 10 percent bigger due 
to radiation-diffusion growth, over and above the hydrodynamic growth. 
 
Free Air Curves4 
 
Computed points from Brode’s kiloton (KT) and megaton (MT) rad-hydro simulations are shown 
in Fig. 3. Notice that the kiloton results (blue points) and MT results (red points) lie on a single 
composite curve:  

    !p ~ 2.6+3.5"10
8
/ R

2.7      (1) 

                                                
4 i.e., the peak over-pressure as a function of scaled radius from the explosion center. 
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The blast wave from a 36.6 KT explosion was simulated with our two-dimensional (2D) AMR 
code. A second order Godunov scheme was used to integrate the gas dynamic conservation laws. 
A tabulated equation of state, based on Gilmore’s thermodynamic solution for the equilibrium 
properties of air up to 107 K [6], was used. Two cases were computed: (i) a 2D explosion in a 
uniform sea level atmosphere, and (ii) a 2D explosion in a stratified US Standard atmosphere 
(see Appendix B for its definition). The point explosion solution (Fig. A2) was used to initialize 
the grid, starting when the shock radius was 160 ft/KT1/3. Results were cube root scaled to one 
kiloton, and presented in Fig. 4. Computed peak shock pressures for the uniform-atmosphere 
case (black points) lie on top of the Brode’s free air curve. This proves that outside 30 ft/KT1/3, 
the blast wave solution is totally gasdynamic (i.e., radiation diffusion no longer influences the 
solution). Also shown in Fig. 4 are the results from the 2D simulation of an explosion in the US 
standard atmosphere (green points), sampled along a horizontal radius at the burst height. One 
can see that the green points fall further and further below the free air curve as the blast wave 
expands. This is because the pressure gradient in the atmosphere induces a rarefaction in the 
blast wave, causing the shock to weaken when measured in the horizontal plane. 
 
References 
 
[1] H. L. Brode, Numerical solutions of spherical blast waves, J. App. Phys. 16 (6) 1955, pp. 766-775.  

(Evolution of blast wave from point-source solution: 2 kilo-bars to 0.1 bar regime) 
[2] H. L. Brode, Theoretical Description of the Blast and Fireball for a Sea-Level Megaton Explosion, 

RM-2248, Rand Corp. 1959, 147 pp. 
[3] H. L. Brode, Theoretical Description of the Blast and Fireball for a Sea-Level Kiloton Explosion, 

RM-2246, 1966 (FOUO). 
[4] H. L. Brode, Review of Nuclear Weapons Effects, Annual Reviews of Nuclear Science vol. 18, 1968, 

pp. 153-202. 
[5] S. Glasstone (Ed.) The Effects of Nuclear Weapons, US Atomic Energy Commission, 1962, 730 pp. 
[6] F. R. Gilmore, Equilibrium Composition and Thermodynamic Properties of Air to 24,000 K, Rand 

Corp. Report RM-1543, 1955, 68 pp; also see DASA 1971-1 THERMAL RADIATION 
PHENOMENA, J. L. Magee and H. Aroeste, Eds. 3-27-67-1 Vol. 1, May 1967, 333 pp. (vid. esp. 
Chapter 1: The Equilibrium Thermodynamic Properties of High Temperature Air by F. R. Gilmore). 

[7] H. L. Brode, Blast wave from a spherical charge, Physics of Fluids 2 (2) 1959, 217-229; also 
Calculation of the Blast Wave from a Spherical Charge of TNT, Rand Corp. Report # RM-1965, 1957, 
1-68. 

[8] R. K. M. Landshoff, Ed., Thermal Radiation Phenomena; Volume 5: H. L. Brode and R. K. M. 
Landshoff Radiation Hydrodynamics of High Temperature Air, DASA 1917-5, Lockheed Missiles 
and Space Company, 1967, 172 pp. (vid. esp. Chapter 2: Physics of Fireballs, pp. 36-58, one kiloton 
at sea level conditions). 

[9] H. L. Brode, Gasdynamic motion with radiation: a general numerical method, Astronautica ACTA vol. 
14 (5), 1969, pp. 443-444. 

[10] M. Dubin, N. Sissenwine, H. Wexler, cochairmen, US Standard Atmosphere 1962, US Government 
Printing Office, Washington, DC 1962, 278 pp. 

[11] A. K. Oppenheim, A. L. Kuhl, E. A. Lundstrom, M. M. Kamel, A parametric study of self-similar 
blast waves, J. Fluid Mech. 52(4), 1972, pp. 657-682. 

[12] Taylor, G. I., "The Formation of a Blast Wave by a Very Intense Explosion, Part 1: Theoretical 
Discussion," first published in British Report RC-210, 1941; revised version in Proc. Royal Society of 
London Series A, Vol. 201, 1950, pp. 159-174. 

[13] Taylor, G. I., "The Formation of a Blast Wave by a Very Intense Explosion, Part 2: The Atomic 



 
Problem 1. Blast Waves from Nuclear Explosions 

 

  9 

Explosion of 1945” Proc. Royal Society of London Series A, Vol. 201, 1950, pp 175-186. 
[14] von Neumann, J. “The Point Source Solution," first published in NDRC Div. B. Report AM-9, 1941; 

then in Shock Hydrodynamics and Blast Waves, Bethe, H. A., ed., AECD-2860, 1944; revised version 
in Blast Waves, Bethe, H. A., ed. , Los Alamos Scientific Laboratory Report LA-2000, 1947, pp. 27-
55; reprinted in John von Neumann Collected Works, Taub, A. H, ed., Vol. VI, Pergamon Press, New 
York 1963, pp. 219-237. 

[15] von Neumann, J., and Goldstine, H., "Blast Wave Calculation," Comm. Pure and Applied 
Mathematics Vol. 8, 1955, pp. 327-353; reprinted in John von Neumann Collected Works, Taub, A. 
M., ed., Vol. VI, Pergamon Press , New York , 1963 , pp . 386-412. 

[16] Sedov, L. I., “The Motion of Air due to an Intense Explosion” Doklady AN SSSR, Vol. 52, No. 1, 
1946, pp 17-20. 

[17] Sedov, L. I., "Rasprostraneniya sil'nykh vzryvnykh voln" (The Propagation of Intense Explosion 
Waves), Prikladnaya Matematika i Mekhanika , Vol. 10, No 2, 1946, pp. 241-250. 

[18] Stanyukovich. K. P., "Application of Particular Solutions for Equations of Gas Dynamics to the 
Study of Blast and Shock Waves," Report of the Academy of Science of the USSR, Vol. 52, No. 7, 
1946. 

[19] Stanyukovich. K. P., Unsteady Motion of Continuous Media, Gostekhizdat, Moscow, 1955; English 
translation. Holt, M., ed., Pergamon Press, New York, 1960, 745 pp. 

[20] P. W. Bridgeman, Dimensional Analysis, Yale University Press, 1922, 113 pp. 
[21] Sedov, L. I., Similarity and Dimensional Method in Mechanics, Friedman, M., translator, Holt, H., 

ed., 4th Printing, Academic Press, New York, 1959, (vid. sp. “Chapter IV: One-dimensional 
Unsteady Motion of a Gas”); orginially published as Methody teorii razmernostey I teorii podobiyav 
mekhanike (Methods of Dimensional Theory and Similarity Theory in Mechanics), Moscow-
Leningrad, Gostekhizdat, 1944, 136 pp. 

[22] P. J. Dolan, Editor, Capabilities of Nuclear Weapons, DNA EM-1 Part I: Phenomenology, Defense 
Nuclear Agency, Washington, DC 1972 (revised 1 August 1981). 

[23] A. L. Kuhl, P. Wang, Nuclear Explosion at 500 feet above a Ground Surface, NECDC 2012 
Proceedings (in press) 

 

 
 
Figure 1.1 Time-distance diagram of the evolution of the thermal wave front and bomb case 
shock for a 1-MT explosion, based on Brode’s 1D numerical simulations [4].   
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Figure 1.2. Comparison of the rad-hydro simulation with the similarity solution (Appendix 1). 
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Figure 1.3 Theoretical free-air curve for nuclear explosions in a sea-level atmosphere, as 
computed by Brode. [1] 
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Figure 1.4 Comparison of the pressure-range curves from AMR code simulations of 36.6 KT 
nuclear explosions in a sea level atmosphere (black dots)23 and a US standard atmosphere (green 
dots)23 with the free air curve of Brode. 
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Appendix A. Analytic Solution for a Point Explosion5 
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Temperature:  T (x)
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5 A. K. Oppenheim, A. L. Kuhl, E. A. Lundstrom, M. M. Kamel, A parametric study of self-similar blast waves, J. 
Fluid Mech. 5(4), 1972, pp. 657-682. 
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Figure A-1. The Z-F phase plane for analysis of self-similar blast waves ( j = 2, ! =1.4 ). 
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Figure A-2. Similarity solution for a point explosion blast wave (! =1.4 ). 
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Appendix B: Analytic Solution for Atmospheric Structure6 

 
Hydrostatic Law:   dp = !!(z)g(z)dz      (B1) 
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Altitude Regime 
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6 M. Dubin, N. Sissenwine, H. Wexler, Co-chairmen, US Standard Atmosphere 1962, US Government Printing 

Office, Washington, DC 1962, 278 pp. (produced by the United States Committee on Extension to the Standard 
Atmosphere: COESA) 
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Evaluation of Constants 
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Figure B-1. Temperature profile of the US Standard Atmosphere 1962. 
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Figure B-2. Atmospheric structure based on the temperature profile of the US standard 
atmosphere 1962. 
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Problem 2: Blast Wave Reflections from Ideal Surfaces 
 
2.1 Regular Reflection from a Wedge (M=2.05, ! = 60  degrees, argon, ! =1.3 )7,8 
 

 
  
                                                
7 H. M. Glaz, P. Colella, I. I. Glass, and R. L. Deschambault, A Detailed Numerical, Graphical and Experimental 

Study of Shock Wave Reflections, LBL-20033, Lawrence Berkeley Laboratory, 1985, 380 pp. 
8 H. M. Glaz, P. Colella, I. I. Glass, R. L. Deschambault (1985a) A numerical study of oblique shock-wave 

reflections with experimental comparisons. Proc. R. Soc. London, Ser. A, 398, pp. 117-140.  
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2.2 Mach Reflection from a Wedge (M = 2.03,! = 27 degrees, air, "=1.4 )7 
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2.3 Double Mach Reflection from a Wedge (M = 8.70,! = 27 degrees, air )7 
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Test Matrix: Shock Reflections from Wedges7 

 
 
2.4 Shock Reflection Factors for Air 
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2.5 HE-Driven Blast Wave Reflection from a Surface9 
 

Abstract  

Flow fields associated with one-dimensional free-air explosions are well known both for the 
point-source case and for the case of a blast wave driven by the detonation of a high-
explosive (HE) charge. Considered here is the two-dimensional case of the reflection of a 
spherical, HE-driven blast wave from an ideal plane surface. The evolution of the flow field 
was calculated with a non-diffusive numerical algorithm for accurately solving the Euler 
equations. This algorithm is based on a second-order Godunov scheme and a monotonicity 
algorithm that is designed to give sharp shocks and contact surfaces while smooth regions of 
the flow remain smooth yet free of numerical diffusion. The incident HE-driven blast wave 
was accurately captured by a fine-zoned one-dimensional calculation that was continuously 
fed into the two-dimensional mesh. The latter incorporated a fine-zoned mesh that followed 
the reflection region and accurately resolved the complicated flow structure occurring on 
multiple length scales. Major findings in the regular reflection region were as follows. 
Portions of the main reflected shock reflected within the channel formed by the wall and the 
dense HE products, thus creating additional pressure pulses on the wall. Coherent vortex 
structures formed on the fireball as a result of the interaction of the reflected shock with this 
contact surface. The flow did indeed make a transition to a double-Mach structure, but this 
transition was delayed 1.5 to 3.8 degrees beyond the two-shock limit of regular reflection 
because the nascent Mach stem was less than one cell high in this region. The double-Mach 
structure with its two moving stagnation points was similar (but not identical) to an 
equivalent shock-on-wedge case. A key feature of this flow was a supersonic wall jet 
(velocity of 3.5 to 4.3 km/s) consisting of a free shear layer and a wall boundary layer. The 
wall jet was laminar in these calculations, but should actually be turbulent due to Reynolds 
number considerations. Nevertheless, calculated peak pressures were found to be in excellent 
agreement with experimental data at all ground ranges.  

 
I. Introduction 
  
 Considered here is the two-dimensional axisymmetric reflection of a spherical high-
explosives (HE)-driven blast wave from a plane surface. The temporal evolution of the flow field 
was calculated with a second-order Eulerian Godunov scheme that accurately solves such 
inviscid compressible flow problems on a very fine computational mesh. The accuracy of the 
solution was confirmed by experimental pressure data for the same problem.  
 
 The details of flow fields associated with one-dimensional free-air explosions are well 
established. Consider, for example, the similarity solutions for spherical blast waves: the point 
explosion solution of Taylor (1941) and Sedov (1946), and all classes of blast waves bounded by 
strong shocks (Oppenheim et ale 1972a) and by strong Chapman-Jouguet detonations 
(Oppenheim et ale 1972b). Other examples are the non-self-similar solutions of the decay of a 
point-source explosion: the original finite difference calculation (Von Neumann and Goldstine 

                                                
9 P. Colella, R. E. Ferguson, H. M. Glaz, A. L. Kuhl, Mach reflection from an HE-driven blast wave, Dynamics of 

Explosions, AIAA Progress in Astronautics and Aeronautics, vol. 106, 1985, pp. 388-421. 
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1955), the method of integral relations solution (Korobeinikov and Chushkin 1966), the method 
of characteristics solution (Okhotsimskii et ale 1957), and the Lagrangian finite difference 
calculations (Brode 1955). Also well established are non-self-similar solutions of the decay of 
spherical blast waves driven by a solid, high-explosives (HE) charge (Brode 1959).  
 

However, when one considers the reflection of such spherical blast waves from a plane 
surface, a detailed description of the flow fields is not generally available. Such flows are 
inherently two-dimensional. They are driven by decaying blast waves, and hence they are 
intrinsically non-self-similar. They depend parametrically on the scaled height of burst (HOB) of 
the explosion, the blast source, and the equation of state (EOS) of the medium (e.g., y varies for 
real air). Hence, such flow fields are not amenable to general solution; each represents a par-
ticular case.  
 
 Much of our knowledge of such reflections comes from considering the flow field in the 
near vicinity of the reflection point. By neglecting the rarefaction wave behind the incident shock, 
one can equate the flow to that produced by a plane, square wave shock reflecting from a plane 
surface. This is, of course, a good approximation when the flow behind the reflected shock is 
supersonic (relative to the reflection point). Many tools then become available. For example, one 
can use the shock polar technique (Courant and Friedrichs 1948) with an appropriate equation of 
state to predict peak pressures in the regular reflection regime; whereas in the Mach reflection 
regime, one must resort to experimental data of shock reflections from wedges (e.g., Bertrand 
1972). One can use experimental shock-on-wedge results and their associated empirical theories 
to predict the transition to Mach reflection and the approximate shock structure. 10 Indeed, such 
analysis predicts that for strong shocks, transition will proceed from regular to double-Mach 
reflection. One can even view the height-of-burst problem as a continuous sequence of shock-on-
wedge configurations for which the wedge angle varies from 90 degrees at ground zero to 0 
degrees at an infinite ground range. Nevertheless, such techniques have a limited utility. They 
are always approximations to a truly non-self-similar problem, and they do not describe the 
entire flowfield. To overcome such limitations, one must resort to height-of-burst experiments 
and two-dimensional numerical simulations.  
 
 Height-of-burst experiments utilizing HE blast wave sources have been conducted (Baker 
1973). Typically, flow field measurements are limited to near-surface static and total pressure 
histories at a small number of ground ranges, and high-speed photography. Often there is much 
scatter in the data due to non-repeatability of the HE charges; this scatter limits the scientific 
usefulness of the data. Some of the most repeatable data come from tests performed with 8-lb 
spheres of PBX-9404 (Carpenter 1974). Nevertheless, such measurements are not sufficient  to 
allow one to reconstruct the entire flow field. For that, a numerical simulation of the flow is 
required.  
 Today, one can simulate the reflection of a spherical blast wave from a plane surface with 
numerical codes that solve the inviscid two-dimensional Euler equations of gasdynamics: for 
example, a simulation of the Tunguska meteorite explosion at an HOB = 305 m/KT1/3 

                                                
10 See , for example, Ben-Dar and Glass (1978, 1979), Ando and Glass (1981), Shirouzu and Glass (1982), 
Lee and Glass (1984), Deschambault and Glass (1983), Bazhenova et al. (1984), Hu and Glass (1986), 
Hornung (1985), and Hornung and Taylor (1982).  
 



 
Problem 2. Blast Wave Reflections from Ideal Surfaces 

 

  25 

(Shurshalov 1978) and the calculation of a point-source case detonated at an HOB = 31.7 
m/KT1/3 (Fry et al., 1981). How accurate are such calculations? One of the difficulties in 
numerical simulation of such flows is the disparity of length scales in the problem; for example, 
the height-of-burst scale versus the Mach stem height (typically less than 1/10 the height-of-burst 
scale) versus the boundary layer scale (which is much smaller than the Mach stem height). One 
must take special care to design the computational mesh to take such disparate length scales into 
account. With the memory size and speed of class VI computers such as the CRAY I, such large-
scale computations are now possible (although expensive). Of course, one needs a minimal-
diffusion numerical algorithm to maximize the information per grid point. A noteworthy 
example is the second-order Eulerian Godunov scheme of Colella and Glaz (1984, 1985). This 
code has been used to simulate shock-on-wedge experiments in the regular reflection regime and 
in the simple, complex, and double-Mach reflection regimes. Excellent agreement with data was 
obtained for those cases for which viscous and non-equilibrium effects were negligible in the 
experiments (Glaz et al. 1985a, 1985b, 1986). In some of the double-Mach reflection cases for 
which such effects were not small, qualitative agreement was still found for flowfield features 
such as contact surface/second Mach stem interaction and subsequent vortex rollup. Nevertheless, 
the question remains: How accurately can one numerically simulate the truly non-steady height-
of-burst case?  
 
 The objective of this work was then to perform a highly resolved numerical simulation of 
the two-dimensional reflection of an HE-driven blast wave with the abovementioned Godunov 
scheme and to check the accuracy of the solution by comparing it with precision experimental 
data. An 8-lb PBX-9404 charge experiment detonated at HOB = 51.66 cm (Carpenter 1974) was 
selected for that purpose. A zoning convergence study (with a fine grid mesh spacing of 1.2, 0.6, 
and, finally, 0.3 mm) was performed to demonstrate that the results were independent of cell size.  
 
 The computational technique including the second-order Godunov scheme, the equations 
of state, the initial conditions, and the grid dynamics are described in §2. The numerical results, 
such as the incident one-dimensional blast wave, the regular reflection regime, transition, the 
double-Mach reflection regime, comparisons of surface data, and comparisons with an 
equivalent shock-on-wedge case, are presented in §3. Conclusions and recommended 
improvements are offered in §4.  
 
2. Computational Method  
 
 The equations of compressible hydrodynamics in one space variable, written in 
conservation form, are  

         (1a) 

where 

!

!t
U +

!

!V
AF +

!

!r
H = 0
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      (1b) 

 
Here,  is the density;  is the total energy per unit mass, where e is the 
internal energy per unit mass, u is the component of velocity in the r-direction, and v is the 
transverse component of velocity; p is the pressure;  represents an arbitrary advected scalar 
quantity; and  is a volume coordinate, . The values 

 correspond to Cartesian, cylindrical, and spherical symmetry, respectively. This 
particular representation of the equations follows Colella and Woodward (1984) and corresponds 
closely to the finite-difference equations that follow.  
 
The pressure is given by an equation of state:  
 
           (2) 
 
for single-fluid hydrodynamics. For the calculations presented here, it is necessary to use a two-
fluid model, where the two fluids are the detonation product gases and air. Each of these 
materials has associated with it an equation of state of the form of Eq. (2). We let  denote the 
volume fraction of high explosives (HE), so that in a mixed cell, . Then our two-fluid 
treatment is defined by the last equation in Eq. (1) and by setting  
 
          (3) 
 
wherever a pressure is needed by the numerical method. This relatively crude treatment (in 
particular, our reliance on the mixture density and internal energy precludes referring to the 
model as a true two-fluid model) turns out to be sufficient for the present problem. This is largely 
due to the fact that the dynamics of the material interface are not of major interest and they do 
not directly interact with the Mach stem region flow field, which is the focal point of this study. 
Our treatment here will be superseded by a true multi-material algorithm based on the simple 
line interface calculation (SLIC) algorithm of Noh and Woodward (1976) and the Eulerian 
second-order Godunov scheme for single-fluid hydrodynamics (Colella et al., 1986).  
 
 The numerical method used in this study is the version of the second-order Eulerian 
Godunov scheme described in Colella and Glaz (1985). This version was especially designed to 
handle general equations of state of the type encountered here. The modifications necessary for 
non-Cartesian symmetries (i.e., ) are described in Colella and Woodward (1984).  
Operator splitting is used to solve multi-dimensional problems; in the axisymmetric calculation 
of §3, this means that Eq. (1) with  are solved in the radial direction with u set to the radial 
component of velocity; and then Eq. (1) with  are solved in the axial direction with u set to 
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the axial component of velocity. A brief overview of the method for solving Eq. (1) is presented 
below.  
 
 Let  represent the cell-averaged solution at time level , i.e.,  
 

         (4) 

 
The computational objective is to define  in terms of . The conservative, second-order-
in-time, finite-difference representation of Eq. (1) is: 
 

  (5) 

 
where 
 ,  and  

 
Here, typically , and  represents the average of U along the (j, j+1) 
interface, i.e., 
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Evidently, a computational scheme in the form Eq. (5) is defined by specifying U

j+1/2

n+1/2  as a 

function of Un . 
 
 The first order Godunov scheme is defined by setting U

j+1/2

n+1/2  to the solution of the 

Riemann problem (U
j

n
,U

j+1

n
)  evaluated along the line r / t = s

j+1/2

n+1/2 . The high-order scheme is 

conceptually similar in that the Riemann problem (U
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n
,U

j+1/2,R

n
)  is constructed and solved in 

the same way.  However, the left and right states are now functions of (U
j!2

n
, ...U
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n
) , 

respectively. These additional data are used to create monotonized piecewise-linear profiles in 
each computational zone, from which a version of the method of characteristics is based to get 
new values centered on the interface. The overall construction, including the solution of the 
Riemann problem, is equivalent to the method of characteristics (up to second order) for smooth 
flow in determining the interface fluxes. Further details, such as monotonicity constraints and 
additional constructions necessary near strong discontinuities, may be found in the references 
mentioned.  
 
 An important aspect of our numerical method is that we do not require equation-of-state 
evaluations at each step in the Riemann problem iterative solution; it is only necessary for the 
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approximate method that the equation of state be evaluated for each U
j

n . The information  
required by the algorithm are the dimensionless quantities ! ! ! (", e)  and ! " !(!, e)  such that  
 
    p = (! !1)"e        (6) 
and 
    c

2
= !p / !        (7) 

 
where c is the speed of sound. Note that ! ! "  for a non-polytropic equation of state. 
 
 The equations of state used in the calculations of §3 are the equilibrium air EOS of 
Gilmore (1955) and Hansen (1959), and the Jones-Wilkins-Lee (JWL) EOS for PBX-9404 
detonation product gases (Dobratz 1974). The caloric JWL equation of state takes the form  
 
   p = A(1!!"

0
/ R

1
")e!R1"0 /" +B(1!!"

0
/ R

2
")e!R2"0 /" +!"e    (8)  

 
whereas the isentrope is given by  
 
    p = Ae!R1!0 /! +Be!R2!0 /! +C(!

0
/ !)!("+1)     (9) 

 
where !

0
 is the initial charge density and the JWL parameters for PBX-9404 are A = 8.545 

Mbar; B = 0.2049 Mbar; C = 0.00754 Mbar; Rl = 4.60; R2 = 1.35; ! = 0.25 . The behavior of !  
for the JWL EOS may be found by fitting Eq. (6) to Eq. (8), and !(!, e)  can be calculated from 
the isentrope using Eq. (9); in this case. c2  is obtained in closed form (Glaz, 1979) and Eq. (7) 
may be used to calculate ! .  
 
 The calculation was run in two stages: first as a one-dimensional free air burst until 
ground strike, and then as a two-dimensional reflection problem. The one-dimensional 
calculation was initialized when the detonation wave reached the charge radius R

c
. The flow 

field inside the charge at that time was assumed to be that of an ideal Chapman-Jouguet (CJ) 
detonation (Taylor 1950; Kuhl and Seizew 1978) with no afterburning. Using the JWL 
parameters for a PBX-9404 charge with an initial density of !

0
 = 1.84 g/cm3, the CJ state is: 

pCJ = 370 kbars ; !CJ = 2.485 g / cm
3 ; eCJ = 8.142!10

10
erg / g ; W

CJ
= 8.8 km / s ; u

CJ
= 2.28 km / s  

qCJ = 5.543!10
10
erg / g ; ! = 2.85 ; ! =1 . 

 
 For an 8-1b sphere the charge radius was R

c
 = 7.76 cm. The ambient atmosphere was 

initialized as p
a

 = 1.00 bar; !
a
 = 1.1687xl0-3 g/cm3; ea = 2.1390 x l09 erg/g; u = 0; ! = 0 . A 

fine-zoned grid (!r  = 0.3 mm) was dynamically moved with the shock to accurately capture the 
complex flow in that region. Coarse zones (!r  = 3 mm) were used near r = 0 and for large r; and 
a transition region connected these cells with the fine grid. After initialization, the evolution of 
the one-dimensional blast wave was calculated by solving Eqs. (1) with !  = 2 until the shock 
radius was equal to the height of burst (51.66 cm; t = 97.44 µs ). This solution was then 
conservatively interpolated onto a two-dimensional mesh. 
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 The two-dimensional mesh covered a region 0 ! r !100 cm  and 0 ! z ! 20 cm  (617 r 
cells by 214 z cells). Note that the top of the grid was below the height of burst to pack as many 
cells near the wall as possible. During the computation, the reflected shock never reached the 
upper boundary; consequently, it could be treated with a time-dependent Dirichlet boundary 
condition. The Dirichlet data were provided by continuing to update the one-dimensional 
solution for each step of the two-dimensional calculation and feeding this solution into the top 
boundary. The bottom boundary was treated as an ideal (slip flow) reflecting plane. The left and 
right boundaries were treated as a symmetry line and an outflow boundary, respectively. A 
uniform fine-grid region (267 r cells by 140 z cells) with !r = !z = 0.3mm  was dynamically 
moved to follow the rightmost shock (the incident wave at early times and the Mach stem at late 
times). Again, transition and coarse cells (!r = !z = 3mm ) were used around the fine-grid region. 
The two-dimensional calculation was continued until the Mach reflection point reached 80 cm 
(270 µs ). This required 3200 computational steps and about 9 hours CP time on the CRAY 1.  
 
3. Results  
 
3.1 Incident HE-Driven Blast Wave 
  
 In 1959, Brode performed a pioneering calculation of a spherically symmetric blast wave 
driven by the detonation of a spherical TNT charge (initial charge density of 1.5 g/cm3, 
detonation pressure of 157 kbar). The one-dimensional Lagrangian finite-difference scheme used 
the artificial viscosity technique (Von Neumann and Richtmeyer, 1950) to capture shock fronts, 
and variable gamma equations of state to describe the air and detonation products gases. He 
found that an extremely strong rarefaction wave was created when the detonation wave reached 
the radius of the charge. This rarefaction accelerated the detonation products to a velocity of 
about 5.5 km/s. The interface or contact surface, CS, between the air and the detonation products 
acted like a spherical piston—thus creating an air shock (maximum peak pressure of about 400 
bars). The resulting blast wave behaved like a decaying piston-driven blast wave (Sedov 1959) 
for shock pressures greater than about 7 bars, and approached the point-source similarity solution 
thereafter. The aforementioned rarefaction wave caused the detonation products to over-expand 
to a velocity larger than that induced by the air shock. This incompatibility was resolved by an 
inward-facing shock, which eventually imploded and created a series of secondary pulses at late 
times.  
 
 Our calculation was performed for a spherical PBX-9404 charge (initial charge density of 
1.84 g/cm3 and detonation pressure of 370 kbar). The resulting blast wave was qualitatively 
similar to Brode's results; hence, the results will not be reported here in detail. Quantitative 
differences were as follows. Peak velocities reached about 17 km/s, whereas the maximum peak 
air-shock pressure reached about 1 kbar, owing to the larger detonation pressure of the PBX 
charge. The blast wave approached the point-source solution at a shock overpressure of about 13 
bars versus 7 bars for TNT. The air shock arrived at ground zero (i.e., at a shock radius 
corresponding to the HOB = 51.66 cm, or 6.78 charge radii) with an incident over-pressure of 
98.86 bars; hence, the flow field corresponded to a piston-driven wave throughout the entire 
regime of the two-dimensional calculation. This led to shock interactions that are unique to the 
HE case.  
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3.2 Overall View of the Two-Dimensional Reflection  
 
 An overall view of the two-dimensional reflection of the spherical HE-driven blast wave 
from an ideal plane surface is depicted in Fig. 1 in terms of isochoric, iso-energy, and isobaric 
contours at different times. Thirty equally spaced contour values were used, with the minimum 
and maximum value and step size identified on the plot. This technique gives a concise display 
of the major features of the two-dimensional flow field: discontinuities appear as heavy dark 
lines (where many contours group together), rarefaction waves appear as a fan of contour lines, 
while plateau regions are contour-free. Contact surfaces may be identified as discontinuities in 
density and internal energy, without any jump in pressure or velocity; slip lines may be 
distinguished as contact surfaces with a discontinuous change in velocity; shocks are denoted by 
discontinuities with sharp jumps in pressure.  
 
 In Fig. I, the incident shock (I), the contact surface (CS) separating the detonation 
products and air, and the inward-facing shock (I') of the incident blast wave are clearly visible. 
Reflection of the incident shock I from the plane surface creates the main reflected shock R, 
which effectively stops the contact surface CS. At small ground ranges, the reflected shock 
propagates upward very slowly because of the large, downward-directed dynamic pressure of the 
detonation products gases of the incident wave. This is markedly different from the case of the 
reflection of a point explosion blast wave in which the reflected shock propagates very rapidly 
through the low-density, high-sound-speed region near the blast center (Fry et a1. 1981).  
 
 Interactions of the reflected shock R with the contact surface CS and the shock I' create 
additional shocks near the ground and generate vortex structures on CS and SL', as shown in Figs. 
la and lb. The reflected shock also deflects the contact surface away from the Mach stem region 
so that in this calculation, the detonation products are not entrained in the Mach stem flow.  
 
3.3 The Regular Reflection Region  
 
A detailed view of the flow field near the end of the regular reflection region (t = 171 µs , 
reflection point at 50 cm) is shown in Figs. 2a and 2b. The weaker discontinuities are somewhat 
difficult to pick out when they are located in the coarse-zoned region; hence they have been 
depicted schematically in Fig. 2c.  
 
 The reflected shock R interacts with the incident-wave contact surface CS at point A, 
creating a reflected shock RC1 and deflecting CS. Shock RC1 reflects off the wall at point B as a 
regular reflection, thus creating a second peak pressure on the wall. The reflected portion of RC1 
reflects off contact surface CS at point C, creating reflected shock RC2, and further deflects 
contact surface CS. Shock RC2 reflects off the wall at point D as a regular reflection, thus 
creating a third peak pressure on the wall. The reflected portion of shock RC2 reflects off contact 
surface CS at point E, creating a third reflected shock RC3.  
 
 The transmitted portion of shock R emanating from point A interacts with the incident 
shock I' (oblique shock interaction) at point F, creating a slip line SL'. The transmitted portion of 
shock I' emanating from point F interacts obliquely with the transmitted portion of shock RC1 
emanating from C at point G; transmitted shocks from this reflection interact with the contact 
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surface CS at point H, and with slip line SL' at J. At earlier times, a transmitted shock from point 
J interacted with the main reflected shock at point L. Density/internal energy gradients in the 
incident wave cause kinks in the main reflected wave at points K and K'.  
 
 In summary, the following features were found in the regular reflection region. The main 
reflected wave R reflects within the channel formed by the wall and the dense detonation 
products (CS), causing additional pressure pulses on the wall. Shock interactions with contact 
surfaces at points A and F inviscidly generate positive and negative vorticity, respectively, which 
rolls up into vortex structures shown in Figs. la and lb. Finally, the main contact surface CS is 
idealized in this calculation as a discontinuity. We know experimentally, however, that this 
surface is irregular and diffused—perturbations on this surface grow owing to a Rayleigh-Taylor 
mechanism and these lead to local turbulent mixing during the evolution of the incident blast 
wave (Anisimov et al. 1983). The strength of reflected shocks RC1 and RC2 will depend on the 
mixing across the contact surface CS. These inviscid calculations, which do not take into account 
such turbulent mixing, no doubt overestimate the strength of shocks RC1 and RC2.  
 

Table 1 Comparison of regular to double-Mach transitions 
Source Wedge angle 

!  (degrees) 
Incident shock angle 

!  (degrees) 
Transition 

ground range (cm) 
Limit of regular reflection: 
Kuhl (1982) 
Gilmore EOS for air 

47 43 48.2 

Glass (1982) 
Hansen EOS for air 

46 44 49.9 

HOB calculation: 
PRR 45.5 44.5 52.5 
DMR 43.2 46.8 55 
 
3.4 The Transition Regime  
 
 A detailed view of the shock structure in the transition region is given in Fig. 3. In this 
calculation, transition from regular reflection (RR) to double-Mach reflection (DMR) occurred at 
a ground range of greater than 52.5 cm and less than 55 cm, with corresponding incident shock 
angles of 44.5 and 46.8 degrees, respectively. Comparison with the limit of existence regular 
reflection (i.e., the so-called deflection criterion) for real air in Table 1 indicates that the 
calculated regular reflection region persisted in this height-of-burst calculation for 1.5 to 3.8 
degrees beyond the theoretical limit. Note that a similar persistence of regular reflection (PRR) 
has been observed for shock reflections from wedges, both experimentally (Bleackney and Taub 
1949; Henderson and Lozzi 1975) and numerically, with the same hydro code used here (Glaz et 
a1. 1985a, 1985b, 1986).  
 
 One can identify three potential reasons for persistence of regular reflection: 1) real 
viscosity, 2) numerical viscosity, and 3) inadequate zoning. Real viscosity must be rejected for 
this case because it was not included in the calculation. The second-order Godunov scheme used 
here leaves essentially no numerical viscosity in the smooth regions of the flow. However, all 
shock-capturing schemes introduce numerical dissipation at shock fronts to allow a smooth 
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transition between pre-shock and post-shock states. When such algorithms are used to calculate 
shock waves near a wall, a "numerical wall boundary layer" is formed (Noh 1976). The primary 
effect of this is to create an artificial "wall heating"—typically a few percent. This effect can be 
seen in the density and radial velocity contours of Fig. 2, which exhibit a kink at about the 3-mm 
height (about ten cells).  
 
 A concerted effort was made to minimize computational cell-size effects. The 617 by 214 
grid used essentially all of the one mega-word fast core space available on a CRAY 1 computer. 
The fine-zoned grid (267 by 140 cells) that slid with the reflection region used cells of 0.3 by 0.3 
mm. This resulted in 83 radial cells between the reflection point at 52.5 cm and the 55-cm point, 
and one would think that would constitute adequate zoning. However, the Mach stem grows 
from a point (in the inviscid theory) and is never captured computationally until the shock 
structure grows large enough to be resolved on the mesh. Note that at the 55-cm location, the 
Mach stem was only four cells high. If a Mach stem existed at the 52.5-cm ground range, it 
would be less than one cell high; hence, it would not have been resolved. A more detailed 
inviscid calculation of transition using a local adaptive grid refinement (e.g., Berger and Colella 
1986) is required to conclusively resolve this zoning question. We speculate that such inviscid 
calculations will indeed confirm that double-Mach reflection will exist immediately after passing 
the RR limit. Therefore, we believe that the persistence of regular reflection in these calculations 
is caused by inadequate zoning and the numerical wall boundary layer, while the persistence 
behavior observed in experiments is due to a viscous wall boundary effect. To conclusively 
prove the latter, a viscous calculation of the oblique shock structure at the wall is required.  
 
 Peculiar gasdynamic effects were observed in this calculation in the PRR region. It is 
well known that as the incident shock angle increases in the regular reflection region, one 
encounters the sonic criterion (where sound waves can reach all the way to the reflection point) 
about 1 degree before one reaches the RR limit (Henderson and Lozzi 1975). In such a case, the 
reflected shock is no longer straight but continuously curved near the reflection point. The 
present calculations also exhibit such effects. Figure 3 shows that the reflected shock is straight 
at a ground range of 45 cm (RR) but curved near the reflection point at 52.5 cm. As shown in 
Table 2, the angle of the main portion of the reflected shock increases smoothly through 
transition; however, at the wall it jumps from about 24 degrees at the 50-cm range to about 37 
degrees at the 52.5-cm range.  
 
 The pressure and velocity profiles on the wall also changed dramatically in the PRR 
region. When the reflection point was at 45 cm, the pressure and velocity gradients were well 
behaved. However, in the PRR region (e.g., with the reflection point at 52.5 cm), the pressure 
and velocity gradients on the wall become very large as one approaches the reflection point from 
the left.  
 
 In summary, the limit of regular reflection for this case is 43 to 44 degrees (depending on 
the particular equation of state used for air) with a corresponding ground range to transition of 
48.2 to 49.9 cm. In this calculation, regular reflection seemed to persist to a ground range of 
about 52.5 cm (!  = 44.5 degrees), but the reflected shock angle near the surface at this range 
was consistent with that of double-Mach reflection (! ~ 37 degrees). Hence, we believe that it 
was indeed a nascent double-Mach structure that was not computationally resolved on the mesh. 



 
Problem 2. Blast Wave Reflections from Ideal Surfaces 

 

  33 

As we shall see in the next section, both local adaptive mesh refinement and turbulence modeling 
are required to properly model certain details of the flow in the double Mach region and, by 
implication, to accurately predict transition.  
 
Table 2 Shock angles near transition  
 

Ground range 
(cm) 

 
Incident shock 
angle !  (deg) 

Reflected shock angle 
         Off wall                  Near wall                Regime 
        !  (deg)                 !

0
 (deg) 

45 42.5 19 19 RR 
50 44 24 24 PRR 

52.5 46.5 26 ~37 PRR 
55 48 28.5 ~37 DMR 

57.5 49 33 ~37 DMR 
60 51 34 ~37 DMR 

 
3.5 The Double-Mach Region  
 
 A detailed view of the complex flow field in the double-Mach region is presented in Fig. 
4 (t = 270 µs , Mach stem at 80 cm). The domain of these figures represents the fine-zoned 
region of the calculation (267 r cells by 140 z cells with a cell size of 0.3 mm). The incident 
shock (I), the reflected shock (R'), and the main Mach stem (Ml) meet at the main triple point 
(TP1), generating a slip line (SL1) that has positive vorticity. Air flows along SL1 and impacts 
on the wall, thus creating a large local pressure. This point actually corresponds to a moving 
stagnation point (SP1), which is particularly evident in the relative vector velocity plot of Fig. 4c 
(the coordinate system is moving with the velocity of SP1 at 2.308 km/s). The flow over-expands 
from SP1 (about 145 bars) by means of a strong rarefaction wave (RW) and forms a low-
pressure (~10-bar minimum) supersonic wall jet (see the Mach number contours, relative to SP1, 
of Fig. 4c).  
 
 The gas velocity in the wall jet (3.5 to 4.3 km/s) is larger than the wave velocity of the 
Mach stem (~2.75 km/s), so the jet rams into the rear of the Mach stem. This interaction pushes 
out the foot of the Mach stem and forces the jet to expand upward two dimensionally, thus 
forming a rotational flow and a main vortex VI, which has positive rotation. The rotational flow 
near VI is locally supersonic, and embedded shocks (S', S''. and S''') can be seen.  
 
 The toeing-out of the Mach stem creates a second triple point, TP2. This is actually an 
inverted Mach stem structure with an incident shock M1', a reflected shock S'', a Mach stem M1, 
and a slip line SL2 that has negative vorticity. This slip line flows up and over the main vortex 
V1, approaches the wall and stagnates, thus creating a second moving stagnation point (SP2), 
which is also evident in the relative velocity vector plot of Fig. 4c. At a range of 80 cm, SP2 has 
shocked-up on the wall. All of slip line SL2 and some of SL1 are entrained in a second vortex 
structure V2, which has negative rotation (see Fig. 4c). All of the fluid entering the main Mach 
stem M1 between triple points TP1 and TP2 is entrained in vortex V2 (see the vorticity contour 
plot of Fig. 4c).  
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 The gas velocity is supersonic above slip line SL1 and subsonic below it. Pressure waves 
from SP1 coalesce, forming the second Mach stem M2. The latter interacts with the reflected 
shock forming a third triple point (TP3). This also appears to be an inverted Mach structure with 
an incident wave R', a reflected wave M2, a Mach stem R, and a slip line (SL3). A fourth triple 
point (TP4) can be seen on shock M2. It appears to be a remnant of the interaction of the 
embedded shock S''' with SL1. It has an incident shock M2, a reflected shock R'', a Mach stem 
M2', and a slip line SL4. Shock R'' terminates on slip line SL3, while shock M2' terminates on 
slip line SL1.  
 
 Secondary vortex structures are evident on slip line SL1 (caused by shock M2 and local 
rarefaction waves) and slip line SL2 (induced by shock S'''), and near vortex V1 (the entrained 
part of SL1 that was shocked by S'').  
 
 The rarefaction wave behind the incident shock propagates through the DMR structure 
(see, for example, the density, internal energy, and pressure contour plots of Fig. 4a) just as in 
the regular reflection case; but this appears to be a weak effect, since the main discontinuities (R', 
SL1 and M2) are basically straight lines.  
 
Even at the 80-cm range, the wall jet was quite thin (1.8 mm) and not well resolved (about six 
cells high); although very fine zoning was used here, it was still too coarse for adequate 
numerical resolution. The slip line SL1 on top of the jet is a free shear layer subject to Kelvin-
Helmholtz instabilities. Here the Reynolds number of the jet was about 3x104 based on jet height. 
It will no doubt develop vortex structures, leading to turbulent mixing. Also, the wall boundary 
layer will reduce the radial momentum of the jet. Hence, turbulence effects will influence the 
entrainment of the main vortex V1 and the toeing-out of M1' (i.e., there will be less pushing). 
These effects were not modeled in this calculation and may, in fact, influence transition.  
 
3.6 Surface Data  
 
 Figure 5 gives a detailed snapshot of the complete flowfield on the surface at the end of 
regular reflection (t = 171 µs , reflection point at 50 cm) and in the fully resolved double-Mach 
region (t = 270 µs , Mach stem toe at 80 cm). Such plots augment the interpretation of the 
contour plots in Figs. 2 and 4. The reflected shocks R, RC1, and RC2 (as well as additional wave 
structures near the origin) can be seen. Both RC1 and RC2 reside in the coarse-zoned region at 
these times; hence they appear somewhat diffused. In the double-Mach region, the main features 
of the flow are sharp and well resolved. Moving stagnation points SP1 and SP2, the shocks M1' 
and S', and the slip surface SL1 are clearly visible. The gas over-expands from stagnation point 
SP1, reaching a maximum velocity of about 4.2 km/s (Mach number of about 5.4) before it is 
shocked by S', thereby becoming compatible with conditions behind M1'.  
 
 In effect, the double-Mach structure focuses the blast energy toward the surface, thereby 
greatly extending the high enthalpy flow region. For example, dynamic pressures of 600 bars, 
pitot pressures of 1200 to 1400 bars, and total enthalpy of nearly 1011 erg/g seen in the regular 
reflection region at 50 cm are extended to a ground range of 80 cm as a result of the double-
Mach flow field.  
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 The calculated surface-level peak overpressures of the various shocks are plotted as a 
function of ground range in Fig. 6. The incident overpressure at ground zero of 98.6 bars reflects 
to a peak value of 880 bars. The corresponding theoretical reflection factor for real air is 9.43, 
which results in a theoretical reflected pressure of 932 bars (versus 880 bars for the two-
dimensional calculation, or 6 percent low due to the zoning). The reflected pressure curve R 
agrees very well with the experimental data of Carpenter (1974), thus indirectly confirming that 
the calculated incident blast wave closely simulated the experimental blast wave. Near ground 
zero, the shocks RC1 and RC2 are much stronger than the reflected shock R, but they decay 
more rapidly. As mentioned before, calculated values for RC1 and RC2 are expected to be too 
large because of the sharp contact surface in the calculation. 
 
 Note in particular that the pressure range curve for shock R suffers a jolt at 49.5 cm (i.e., 
near the RR limit) and locally increases at 53 cm—this behavior perhaps being a consequence of 
the arrival of the sonic point singularity and the formation of a nascent Mach stem. 
 
 In the double-Mach region, the main stagnation point SP1 decays from 290 bars at 
transition to a value of almost 100 bars at 80 cm. Stagnation point SP2 and shock M1' decay 
rather slowly from 100 bars to 75 bars. In general the calculated peaks in the double-Mach 
region are in excellent agreement with the experimental data (Carpenter, 1974), even at 53 cm, 
where the grid points were inadequate to resolve the double-Mach stem. 
 
3.7 Comparisons with DMR on Wedges  
 
 Considerably more is known about the details of double-Mach shock structures created 
by plane shock reflections from wedges. Such flows have many useful features: 
  

1. The flows are self-similar (two-dimensional Cartesian), and hence are more amenable to 
analysis.  

2. Experimental photographic results (e.g., Schlieren, shadowgraph, and interferometric 
data) are available to verify code calculations.  

3. The complicating effects of a rarefaction wave behind the incident shock are absent.  
 
 In addition, wedge results (e.g., reflection factors) are often used to approximate the 
height-of-burst case. Hence, it is useful to explore the equivalence of the DMR flow field for the 
wedge case corresponding to the height-of-burst case.  
 
 The double-Mach structure at a time of 270 µs  (Mach stem at 80 cm) from the present 
calculation was selected for comparison. At this time the incident shock Mach number (MI) was 
5.46 with an incident shock angle of about 57 degrees. The equivalent wedge case was 
constructed as follows. A 500!100  two-dimensional Cartesian mesh was chosen with square 
zones (!x = !y =1 unit ). The shock properties corresponding to a M

I
= 5.46  real air shock were 

continuously fed into the left side of the grid at a shock angle of 57 degrees (wedge angle of 33 
degrees). The second-order Godunov scheme (with Gilmore's equation of state for real air) was 
then used to calculate the reflected flow field.  
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 The results of the wedge case are shown in Fig. 7. By design, the calculations are 
identical at the main triple point TP1. The overall features of the wedge flow field are quite 
similar to the height-of-burst case (Fig. 4), considering that the wedge case was about 2.4 times 
more coarsely zoned. Peak pressures on the wall (SP1) were 133 bars (instantaneous value at 
75.2 cm) for the height-of-burst case and 122 bars for the wedge, yielding "reflection factors" of 
3.8 and 3.5, respectively.  
 The principal differences are the reflected shock angle and the location of triple point 
TP3. The reflected shock angle of 49 degrees for the height-of-burst case is considerably steeper 
than the 22-deg angle for the wedge case. In the height-of-burst case, the rarefaction wave 
behind the incident shock allows the reflected shock R to move upward more easily into the 
incident wave. This causes the second Mach stem (M2) to be more vertical and the length of the 
reflected shock R' to be about half the value found for the wedge case. (To elucidate these points, 
shocks M2 and R for the height-of-burst case are depicted as dashed lines on the wedge results.) 
Consequently, the distance between points SP1 and M1' (i.e., the DMR duration) is somewhat 
shorter in the height-of-burst case.  
 
 In summary, we may conclude that the height-of-burst case is truly non-steady, and hence 
not amenable to similarity analysis. The rarefaction wave behind the incident shock modifies the 
reflected shock angle at TP3 and thereby influences the location and shape of the second Mach 
stem M2, compared to the equivalent wedge case. Because peak reflected pressures and 
"reflection factors" are a consequence of the gasdynamic state at the main triple point, they are 
similar for the two cases. However, the height-of-burst "reflection factor" (R = !pSP1 /!pI ) must 
be based on instantaneous values (with SPl, TP1, and MI' all being at different radii from the 
explosion center).  
 
4. Conclusions  
 
 The present calculation demonstrates that the reflection of a spherical HE-driven blast 
wave from a plane surface creates complex flow structures on multiple length scales. In the 
regular reflection region, portions of shock R reflect within the channel formed by the wall and 
the dense detonation products, thus producing additional pressure pulses on the wall. The 
interaction of shock R with contact surface CS and slip line SL' inviscidly generates vorticity, 
which leads to the formation of large-scale vortex structures (i.e., turbulent mixing) on the 
interface between the detonation products and the air. In the double-Mach flow structure, slip 
lines emanating from triple points TP1 and TP2 are directed downward. The flow is forced to 
turn parallel at the wall, thereby converting some of the flow kinetic energy into pressure and 
creating stagnation points SPI and SP2 that move with the DMR structure. This also creates a 
supersonic wall jet consisting of a free shear layer and a wall boundary layer.  
 
 The Reynolds number of the jet is quite large, ranging from 3x104 for this case to 107 for 
large-scale explosions. Hence, one would expect strong turbulent mixing at the free shear layer; 
however, the wall jet in these calculations was laminar. The second-order Godunov algorithm 
used here is non-diffusive enough to be able to calculate the evolution of discrete vortex 
structures started from inviscid Kelvin-Helmholtz instabilities (Glowacki et al., 1986) if adequate 
zoning is used in the jet (about five times finer than that used here). The wall boundary layer was 
not modeled. Both effects will influence the horizontal momentum of the jet, the toeing-out of 
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the Mach stem, and the rotational flow of the main vortices VI and V2. Adaptive gridding and a 
viscous wall boundary layer capability are needed to accurately model these details.  
 
 A double-Mach shock structure appeared in this calculation at a ground range between 
52.5 and 55 cm, which was 1.5 to 3.8 degrees beyond the limit of regular reflection. We believe 
that the so-called persistence of regular reflection in this calculation was caused by inadequate 
computational zoning, whereas the persistence in experiments is due to viscous wall boundary 
layer effects. Adaptive gridding and a viscous wall boundary layer capability are again needed to 
accurately calculate such flows.  
 
 The double-Mach shock structure directs some of the blast energy toward the surface, and 
thereby extends the high enthalpy flow to larger ground ranges. The calculated surface-level 
peak pressures are in excellent agreement with experimental data at all ground ranges.  
 
 A shock-on-wedge calculation was also performed to simulate the double-Mach flow 
field from the height-of-burst case at t = 270 µs  (Mach stem at 80 cm). Overall features of the 
flow were quite similar in both cases. The principal differences were the reflected shock angle, 
which was larger in the height-of-burst case, and the location of triple point TP3, which was 
closer to TPI in the height-of-burst case. These effects were attributed to the incident wave 
rarefaction effects and true non-steadiness of the height-of-burst case.  
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Figure 1a. Transition from regular to double-Mach reflection for a spherical, HE-driven blast 
wave reflecting from an ideal plane surface. Density contours (mg/cm3). 
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Figure 1b. Transition from regular to double-Mach reflection for a spherical, HE-driven blast 
wave reflecting from an ideal plane surface. Internal energy contours (109 erg/g). 
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Figure 1c. Transition from regular to double-Mach reflection for a spherical, HE-driven blast 
wave reflecting from an ideal plane surface. Pressure contours (bar). 
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Figure 2a. Interaction of the reflected wave R with the contact surface CS and shock I’ in the 
regular reflection regime ( t =171µs ; reflection point at 50 cm). 
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Figure 2b. Interaction of the reflected wave R with the contact surface CS and shock I’ in the 
regular reflection regime ( t =171µs ; reflection point at 50 cm). 
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Figure 2c. Interaction of the reflected wave R with the contact surface CS and shock I’ in the 
regular reflection regime. Schematic showing wave interactions (a) t =124 µs, r = 30cm , (b) 
t =145µs, r = 40cm , (c) t =171µs, r = 50cm . 
  



 
Problem 2. Blast Wave Reflections from Ideal Surfaces 

 

  47 

 
 
Figure 3. Pressure contours showing transition from regular to double-Mach reflection: (a) 
t =158 µs, r = 45cm  (RR), (b) t =179 µs, r = 52.5cm  (PRR), (c) t =187 µs, r = 53cm  (DMR).  
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Figure 4a. Shock structure in the double-Mach reflection regime ( t = 270 µs , Mach stem at 80 
cm). 
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Figure 4b. Shock structure in the double-Mach reflection regime ( t = 270 µs , Mach stem at 80 
cm). 
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Figure 4c. Shock structure in the double-Mach reflection regime ( t = 270 µs , Mach stem at 80 
cm). 
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Figure 5a. Comparison of surface-level flow fields in the regular reflection regime ( t =171µs ) 
and double-Mach reflection regime ( t = 270 µs ) 
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Figure 5b. Comparison of surface-level flow fields in the regular reflection regime ( t =171µs ) 
and double-Mach reflection regime ( t = 270 µs ). 
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Figure 5c. Comparison of surface-level flow fields in the regular reflection regime ( t =171µs ) 
and double-Mach reflection regime ( t = 270 µs ) 
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Figure 6. Comparison of calculated peak pressures on the surface with experimental data 
(Carpenter, 1974). 
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2.4 Assessment 
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Problem 3: Blast Wave Reflections from Ground Surfaces11 

 
 
 

 
 
  

                                                
11 Kuhl, A. L. (1993) Turbulent wall jet in a blast wave precursor (plenary lecture), 1993 Japanese National 

Symposium on Shock Wave Phenomena (K. Takayama Ed.), Tohoku Print, Sendai, Japan. Also published as 
UCRL-JC-112713, Lawrence Livermore National Laboratory, Livermore, CA, 40 pp. 
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Appendix A: Empirical thermal layer from Event Priscilla 
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Appendix B: Color visualization of the precursor wall jet flow 
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Appendix C. Color visualization of the dusty boundary layer surface 
 

t = 0.654 s 
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t = 0.71 s 
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t = 0.778 s 
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t = 0.941 s 
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t = 1.23 s 
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t = 1.38 s 
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Problem 4: Spherical Mixing Layers 

 
Abstract 

This study explores the properties of spherical combustion clouds in explosions. Two cases are 
investigated: (i) detonation of a TNT charge and combustion of its detonation products with air, 
and (ii) shock dispersion of Aluminum powder and its combustion with air. The evolution of the 
blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with 
our Adaptive Mesh Refinement (AMR) combustion code. The code solves the multi-phase 
conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-
phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase 
combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to 
Boiko’s shock tube data, along with an ignition temperature criterion based of fits to Gurevich’s 
data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. 
Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah 
code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to 
resolve thin reaction zones and capture the energy-bearing scales of turbulence on the 
computational mesh (ILES approach). Taking advantage of the symmetry of the problem, 
azimuthal averaging was used to extract the mean and rms fluctuations from the numerical 
solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles 
across the combustion cloud. Fuel consumption was limited to ~ 60-70 %, due to the limited 
amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays 
away. Turbulent kinetic energy spectra of the solution were found to have both rotational and 
dilatational components, due to compressibility effects. The dilatational component was typically 
about 1% of the rotational component; both seemed to preserve their spectra as they decayed. 
Kinetic energy of the blast wave decayed due to the pressure field. Turbulent kinetic energy of 
the combustion cloud decayed due enstrophy ! 2 and dilatation !2 . 

 
1. Introduction 
 
This study investigates combustion clouds embedded in unconfined spherical explosions. Two 
charge configurations are considered: a 0.5-g spherical PETN booster surrounded by a spherical 
shell of either 1-g of TNT solid or of 1-g of Aluminum (Al) powder; these provide the fuel for 
the combustion process. Detonation of booster disperses the fuel, whose expansion drives a blast 
wave into the surrounding atmosphere. The fuel-air interface is unstable and rapidly evolves into 
a turbulent mixing layer. The hot detonation products and the shock-heated air serve as ultra-
strong ignition sources of the fuel-air mixture, which evolves into a spherical combustion cloud 
[1,2].  
 
 The evolution of the blast wave and ensuing combustion cloud dynamics are studied via 
numerical simulations with our adaptive mesh refinement (AMR) combustion code [3,4]. The 
code solves the multi-phase conservation laws for a dilute heterogeneous continuum as 
formulated by Nigmatulin [5]. These equations are integrated with high-order Godunov schemes 
on uniform Eulerian grid patches. AMR is used to resolve reaction zones and capture energy-



 
Problem 4. Spherical Mixing Layers 

 

  114 

bearing scales of the turbulence (the ILES12 approach). This Model of turbulent combustion in 
explosions has been validated by extensive comparisons with data from calorimeter experiments 
[1.2]. Computed pressure histories were shown to agree well with measured waveforms in 
twenty-four different types of experiments [3], [4]—thereby establishing the accuracy of the 
combustion Model for this class of combustion problem. 
 
 However in those previous studies, the nature and details of the computed turbulent fields 
remained undiagnosed. The purpose of the follow-on work described here was to investigate 
such turbulent combustion clouds in a geometry whereby the turbulence fields could be easily 
extracted and investigated. To that end we chose the unconfined spherical mixing layer 
geometry; due to the point symmetry of the problem, the flow fields could be azimuthally 
averaged to evaluate the mean and rms profiles of the turbulent fields. 
 
 The Model is described in §2, including: governing conservation laws, multi-phase 
interaction terms, combustion modelling, equations of state, numerical methods, and statement of 
the initial value problem. Results are presenting in §3, including: flow visualization; azimuthal 
averaging methodology; thermodynamic, kinematic and reaction-zone profiles across the mixing 
layer; and turbulent kinetic energy spectra. This is followed by a Summary and Conclusions in 
§4. 
 
2 Model 
 
2.1 Conservation Laws 
 
The model is based on the Eulerian multi-phase conservation laws for a dilute heterogeneous 
continuum as formulated by Nigmatulin [5]. We model the evolution of the gas phase 
combustion fields in the limit of large Reynolds and Peclet numbers, where effects of molecular 
diffusion and heat conduction are negligible on the gasdynamic fields. The flow field is governed 
by the following conservation laws: 
 
Mass:    !

t
" +!" ("u) = !!

s
      (1) 

 
Momentum:   !t"u+!" (!uu+ p) = !! sv#

!fs     (2) 
 
Energy:   !

t
!E +!" (!uE + pu) = # !q

s
+ !!

s
e
s
# !fs "v    (3) 

 
where !, p,u  represent the gas density, pressure and specific internal energy, u is the gas 
velocity vector, and E ! u+u "u / 2  denotes the total energy of the gas phase. Source terms on 
the right hand side take into account: mass transfer from the particle phase to gas phase ( !!

s
), 

acceleration of particle phase by drag ( !fs ), and heat exchange (

! 

˙ q s) to the particle phase. For gas-
phase combustion (the TNT-air case), the gasdynamic form of the above equations is used (i.e., 

                                                
12 Implicit Large Eddy Simulations (ILES), see reference [32] 
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!!
s
= !fs = !qs = 0 ). For two-phase combustion, the above equations are supplemented by the 

following two-phase modeling laws. 
 
We treat the particle phase as an Eulerian continuum field. We consider the dilute limit, devoid 
of particle-particle interactions, so that the pressure and sound speed of the particle phase are 
zero. We model the evolution of particle phase mass, momentum and energy fields by the 
conservation laws of continuum mechanics for heterogeneous media [3],[5]: 
 
Mass:    !

t
! +"#! v = $ !!

s
      (4) 

 
Momentum:   !t! v+"#! vv = $ !! sv+

!fs      (5) 
 
Energy:    !

t
!e

s
+"#!e

s
v = !q

s
$ !!

s
e
s      (6) 

 
where σ and 

! 

v  represent the particle-phase density and velocity, and e
s
!C

s
T
s

 denotes the 
specific internal energy of the particle phase. 
 
 It is important to point out that there is no “heat addition due to combustion” in the 
energy equation (3). This is a consequence of the absolute energy formulation of the Le Chatalier 
diagram (Fig. 1), which will be explained in §2.4. In this formulation, energy is constant—a 
system invariant. 
 
2.2 Interactions 
 
The inter-phase interaction terms for mass, momentum, heat and particle burning take the form as 
described in Khasainov et al. [6]: 
 

Mass Exchange:  !!
s
=

0                                     T
s
< T

L

3! (1+ 0.276 Re
s
) / t

s
   T

s
! T

L

"
#
$

%$
:   (7) 

 
Vaporization time:  t

s
= Kd

s

2        (8) 
 

Momentum Exchange: !fs =
3

4

!

!
s

!

d
s

C
D
(u! v) u! v      (9) 

 
Drag Coefficient:   C

D
= 24 / Re

s
+ 4.4 / Re

s
+ 0.42     (10) 

 

Heat Exchange:  !qs =
6!

"sds

Nu#(T !Ts )

ds
+$! Boltz (T

4 !Ts
4
)

"

#
$

%

&
'    (11) 
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where Re
s
= !d

s
u! v /µ , Nu = 2+ 0.6Pr Re

s
, Pr =Cpµ / k , !

s
= 2.7g / cc  is the density of 

the Al particle and 

! 

d
s
 its diameter, while 

! 

K =150 s/cm
2  according to Ingignoli [7]. The gas 

viscosity, specific heat and thermal conductivity are denoted by µ, Cp,  and k , respectively. 
 
 Previously, the above interaction terms (7)-(11) where used successfully by Veyssiere 
and Khasainov [8] to model steady, plane, double-front detonations in gaseous explosive 
mixtures containing suspended Al particles. In the current implementation, we convert the Al 
particles to a liquid at 

! 

T
L

= 932K . We assume that once in the liquid phase, the droplets quickly 
form a micro-mist due to intense accelerations by the gas, as has been demonstrated by Kobiera 
et al [9] for hexane droplets. At this point the liquid is assumed to be in velocity and temperature 
equilibrium with the gas phase, and we assume that the micro-mist is susceptible to diffusive 
combustion (limited by the oxidizer supply rate) without having to reach the boiling temperature 
of Al (~2,300 K).  
 
2.3 Combustion 
 
We consider three fuels: PETN detonation products (

! 

F
1
), TNT detonation products (

! 

F
2
), and 

Aluminum (

! 

F
3
), along with their corresponding combustion products: PETN-air (

! 

P
1
) and TNT-

air (

! 

P
2
) and Al-air (

! 

P
3
). We model the global combustion of the fuels 

! 

F
k
 with air (A) producing 

equilibrium combustion products 

! 

P
k
: 

 
    F

k
+ A

k
! P

k
  (

! 

k =1, 2 or 3)    (12) 
 
The mass fractions  of the components are governed by component conservation laws; in the 
limit of large Peclet numbers (where molecular diffusion effects are negligible) they become: 
 
Fuel-k:    !

t
"Y

Fk
+!""Y

Fk
u =# !s

k
+!

k3
!!
s
    (13) 

 
Air:    !

t
"Y

Ak
+!""Y

Ak
u = # #

k
!s
k

k

$      (14) 

 
Products-k:   !

t
"Y

Pk
+!""Y

Pk
u = (1+#

k
)!s

k

k

#     (15) 

 
Fuel and air are consumed in stoichiometric proportions: !

k
= A

k
/ F

k
. In the above, 

! 

˙ s 
k
 represents 

the global kinetics term. For PETN-air and TNT-air combustion, we assume combustion is 
mixing limited, so we use the the fast-chemistry approximation: whenever fuel and air enter a 
computational cell, they are consumed in one time step. For Al-air combustion, we use an 
induction time model described below. The term !

k3
!!
s

13 represents the conversion of Al from 
the particle phase to the gas phase, which creates a source of Al fuel. 

                                                
13 Kroneker delta: !

k3
=1 if k=3 & !

k3
= 0 if k ! 3  

Y
k
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 Following Korobeinikov [10] and Oran [11] for premixed systems, we define an induction-
time fraction: 

! 

f (x,t), which is initialized to zero:

! 

f (x,0) = 0, and grows to 1 at the end of the 
ignition delay. It evolves according to the following advection equation: 
 
Induction Model:  !t" f + v !"! f =! / " i      (16) 
 
The induction time, τi, is based on an Arrhenius fit to Boiko’s Al particle data: [12],]13], [14] 
 

Induction Time:  !
i
= Ae

E0 /RT        (17) 
 
where  A = 1.6 x 10-8 s and E0 = 60 kcal/mole for flake Al. An ignition temperature model Ti is 
also employed: 
 

Ignition Temperature: Ti = Tmpo ! 0.6!
Cox

0.3
ds

!
exp(!0.85 ds )     (18) 

 
where  is the melting point of the Aluminum oxide coating (~2300 K),  denotes the 
oxidizer concentration, and  represents the thermal conductivity of the gas. It is based on fits to 
Gurevich’s data [15].  
 
         An ignition probability model is used to capture multi-particle effects on cloud ignition [14]: 
 

Ignition Probability:  µ
c
(! ) =

1

1+ exp[(! 0 !! ) / b]
     (19) 

 
Here  denotes the value of particle concentration resulting in a 50 % probability of cloud 
ignition, while b represents the slope parameter which determines the width of the probability 
function. For flake Al particles ignition in air, they acquire the following values:  
and b = 20.  Equation (19) was determined empirically by fitting data from the Al particle cloud 
experiments of Boiko [12]-[14]. It models the requirement that the local concentration of particles 
must be large enough so that ignition of one particle can be passed on to its neighbors—a cloud 
ignition effect—in contrast to the single-particle ignition effect (e.g., the Gurevich ignition 
temperature function (18)). Being based on experimental data, it implicitly presumes that the 
local mixture is within the flammability limits of the Al-air system considered. 
 
 Finally, ignition occurs in the model when 

! 

f =1 and 

! 

T
s

> T
i
; then the source term 

becomes: 
 
Ignition:   !s

3
= !! !µ

c
(! )        (20) 

 
 
 
 

T
mpo

C
ox

!

!
0

!
0
=130 g /m

3
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2.4 Equations of State 
 
Our code carries the density and specific internal energy, along with the gas composition in each 
cell. These are used to calculate the pressure and temperature in a computational cell based on 
Equations of State (EOS). The thermodynamic states encountered during shock-dispersed-fuel 
(SDF) explosions have been analyzed in [16]. Here we summarize only the salient features 
needed for the numerical modeling. The caloric equation of state can be specified in the Le 
Chatelier plane (Fig. 1) of specific internal energy as a function of temperature: 

! 

u(T). Notice 
that these curves are negative at low temperatures; this is because the heat of formation is 
included in u(T); we call this the absolute energy formulation.  
 
 Loci of states covering the temperature range 300 K ! T ! 6000 K  were calculated by 
the Cheetah code [17], based on the following thermodynamic assumptions: 
 

• Air: equilibrium isobar14 (

! 

p =10 atm ) 
• Aluminum: equilibrium isobar (

! 

p =10 atm ) 
• PETN detonation products: equilibrium isentrope passing through the Chapman-Jouguet 

point, with frozen composition for T < 1800 K15 
• TNT detonation products: equilibrium isentrope passing through the Chapman-Jouguet 

point, with frozen composition for T < 1800 K 5 
• Al-air combustion products: equilibrium isobar4 (

! 

p =10 atm ) 
 
These loci were fit with piecewise quadratic functions for each component: 
 
    u(T ) = a

i
T
2
+ b

i
T + c

i
  T

i
! T < T

i+1    (21) 
 
The coefficient values a

i
,b

i
,c

i
are tabulated in [16].  Given the computational cell specific 

internal energy, , temperature is evaluated by solving the above quadratic for . Pressure is 
then calculated from the perfect-gas relation16: 
 
    p = !RT        (22) 
 
or from the JWL function in the detonation products gases: 
 

    
pJWL (v,T ) = A 1!

! " v0
R1 " v

#

$
%

&

'
(exp(!R1 " v / v0 )+

B 1!
! " v0
R2 " v

#

$
%

&

'
(exp(!R2 " v / v0 )+ RT / v

  (23) 

 
where v is the specific volume ( v =1/ ! ). For more details, see [16]. 

                                                
14 We found that the 

! 

u(T )
isobar

= u(T )
isochor

 for T < 4000 K, hence it was sufficient to fit the internal energy as 
solely a function of temperature; above 4000 K this is an approximation, with an error less than  10%. 
15 see Ree et al. [18] for justification 
16 We found that the perfect-gas law accurately describes constant volume explosions for p !1 kbar  [2]. 

! 

u

! 

T
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2.5 Numerical Methods 
 
The above conservation laws were integrated with a high-order generalization of Godunov’s 
method [19]. The algorithm is based on an efficient Riemann solver for gasdynamics first 
developed by Colella and Glaz [20] and Colella and Woodward [21] and extended to generalized 
conservation laws by Bell et al. [22] and to un-split upwind schemes by Colella [23]. The solver was 
modified to accommodate negative specific internal energies (vid. Fig. 1) associated with our 
thermodynamic formulation. The algorithm for the particle phase conservation laws is based on a 
Riemann solver for two-phase flows as developed by Collins et al. [24]. The boundary condition 
for the particle phase at a solid wall was elastic reflection (i.e., momentum reversal). Source 
terms are treated with Strang-splitting methods. Since the integrators are based on Riemann 
solvers; information propagates along characteristics at the correct wave speeds, and they 
incorporate nonlinear wave interactions within the cell during the time step. They include a 
limiting step (slope flattening) that automatically reduces the order of approximation in the 
neighborhood of discontinuities, while in smooth regions of the flow the scheme is second order 
in time and space. 
 
 The Godunov algorithm forms the integrator for our adaptive mesh refinement (AMR) 
code. Our adaptive methods are based on the block-structured AMR algorithms of Berger & 
Colella [25], and extended to three-dimensional hyperbolic systems by Bell et al. [26]. Embedded 
boundary methods [27] are used to represent irregular geometries. In this approach, regions to be 
refined are organized into rectangular patches, with several hundred to several thousand grid-
points per patch. One can refine on discontinuities (shocks and contact surfaces), on Richardson 
error estimates, or for present purposes, on reaction zones. Grid patches are assigned to 
processors by a knapsack algorithm based on workload estimates, [28] so the AMR code runs 
efficiently on massively-parallel computers. [29] 
 
 AMR is also used to refine turbulent mixing regions; by successive refinements we are 
able to capture the energy-bearing scales of the turbulence on the computational grid. In this way 
we are able to compute the effects of turbulent mixing without resorting to explicit turbulence 
modeling. This is consistent with the so-called MILES (Monotone Integrated Large-Eddy 
Simulation) approach of Boris [30],[31]. A comprehensive review of such Implicit Large-Eddy 
Simulation (ILES) methods may be found in Grinstein et al. [32]. Verification of the ability of our 
upwind scheme to produce velocity fields that replicate the Kolmogorov spectrum of turbulent 
flow, has been demonstrated by Aspden et al. [33] for incompressible flows. 
 
2.6 Initial Conditions 
 
We simulated two cases of combustion in unconfined explosions: afterburning of TNT in air and 
combustion of Al powder with air. These fuels were dispersed by the detonation of a PETN 
booster. Charge configurations were:  
 

• 0.5-g spherical PETN booster ( !
0
=1 g / cc ), surrounded by 1.0-g spherical shell of TNT 

fuel (!
0
=1 g / cc ),  
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• 0.5-g spherical PETN booster ( !
0
=1 g / cc ), surrounded by 1.0-g spherical shell of loose 

Al powder ( !
0
= 0.6 g / cc ).17 

 
 The computational domain was: !100cm < x <100cm ; -100 cm < y < 100 cm; -100 cm < 
z <100 cm. A base-grid of 

! 

"
0

= 3mm  was used, with four levels of refinement, so the mesh size 
of the finest grid was 

! 

"
4

= 0.2 mm . The domain was initialized with air at: 

! 

pa =1 atm , 

! 

T
a

= 273K , !
a
=1.2 mg / cc . The simulation was run to a time of 4 ms. 

 
3 Results 
 
3.1 Flow Visualization 
 
Turbulent combustion inside the cloud is visualized by a color-bar representation of the 
temperature field in Fig. 2. The TNT-air cloud reaches a combustion temperature of ~ 2000 K, 
while the Al-air cloud reaches a combustion temperature between 3000 and 4000 K. For the TNT 
case, combustion occurs along thin flame sheets (Fig. 3), while a distributed-combustion mode is 
realized for the Al-powder case (Fig. 2 d-f) due to two-phase flow effects. By performing 
reactive and non-reactive flow simulations shown in Fig. 4, it was demonstrated that combustion 
caused no change in the pressure field during the positive phase of the blast wave—in other 
words, combustion in the fireball is isobaric. This is confirmed by pressure histories measured in 
a 40 liter calorimeter (Fig. 5); experiments in nitrogen versus air illustrate that combustion 
effects become noticeable after reflections from the chamber walls. 
 
3.2 Azimuthal Averaging 
 
The problem under consideration is point symmetric. In the absence of instabilities at the fuel-air 
interface, the solution is solely a function of radius and time: !(r, t) . An example of this is blast 
wave from a TNT charge as calculated by Brode [34],[35]. One can obtain the radial solution by 
azimuthally averaging the computed 3D flow field to produce !(r, t) . Given that mean, one can 
compute second moments of the flow field to evaluate root-mean-squared (rms) fluctuations 
about the mean: !" (r, t)

rms
. The numerical algorithm for accomplishing this is described in 

Appendix A. This technique was first used by Kuhl [36] to investigate spherical mixing layers in 
TNT explosions. 
 
3.3 Thermodynamic Profiles 
 
The azimuthally averaged thermodynamic profiles of density, temperature and pressure in the 
TNT combustion cloud are presented in Fig. 6. The mean fields (left column) depict the one-
dimensional blast wave fields engendered by the detonation of the TNT charge (vid. Brode[34][35]). 
The rms fields quantify the consequences of the three-dimensional turbulent mixing. Since 
                                                
17 This Al powder density corresponds to a porosity of 80% (i.e. a volume fraction of 20%); it was a consequence of 
the inefficient packing density of the flake Al particles used in the experiments. It is also why the dilute 
heterogeneous continuum model used here is successful. 
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pressure fluctuations are very small (~ 1% of ambient), density fluctuations track temperature 
fluctuations, which increase in time due to combustion. 
 
3.4 Kinematic Profiles 
 
Azimuthally averaged kinematic profiles in the TNT combustion cloud are presented in Figs. 7. 
The mean radial velocity profiles again resemble those from TNT charges.[34],[35] The rms 
velocity-fluctuation profiles ( !u

r
, !u! , !u" ) are similar in magnitude; at 0.2 ms they peak at ~ 60 m/s 

and decay to ~ 5 m/s by 4 ms. Thus the turbulence is isotropic in this problem. The Reynolds 
stress profiles at t = 0.65 ms are depicted in Fig. 7e. This flow is dominated by the diagonal 
stresses (!

rr
,!"" ,!## ) whose profiles are similar, while the cross terms (!

r" ,! r#,!"# ) are negligible. 
Enstrophy: ! 2  (or inner product of the vorticity vector: ! ), provides scalar measure of the 
vorticity field.  Its mean18 profiles !(R

n
, t)

2  are presented in Fig. 7f; they decay by two orders of 
magnitude during the 4 ms of the simulation. 
 
3.5 Reaction Zone Profiles 
 
Development of the component mass-fraction profiles: 

! 

Y
k
(r,t) (where k = D, DP, F, CP, A 

representing PETN driver gas, PETN-air combustion products, TNT detonation products as a 
fuel, TNT-air combustion products and air, respectively) are presented in Fig. 8. Most 
prominently Fig. 8 shows the initiation and growth of the combustion products CP near r = 10 
cm, and the depletion of fuel: F and air: A due to combustion. Eventually the combustion 
products spread throughout the cloud (Fig. 8f) as a consequence of turbulent mixing. 
Development of the component mass-fraction profiles in the Al-air combustion cloud, are 
presented in Fig. 9. Profiles are qualitatively similar to those of the TNT-air cloud (Fig. 8). 
 
 Details of the early time growth and evolution of the combustion Products mass profiles 
for the TNT case are presented in Fig. 10. The reaction zone starts at 10 µs  near r ~ 3 cm (Fig. 
10c); by 100 µs  its center has migrated out to r ~ 10 cm and has broadened into a shell of width 
~ 6 cm. By 4 ms, it has moved out to r ~ 15 cm; Products have spread throughout the cloud due 
to turbulent mixing. rms fluctuations of Products were approximately 50% the mean  (Fig. 10d). 
 It is worth recalling that the simulations were performed for 1-g fuel charges. Although 
not labeled as such in Figs. 8-10, one can consider the radial dimensions and times as r (cm / g1/3)
and t (ms / g1/3)  when scaling to other charge masses. 
 
3.6 Fuel Consumption 
 
Fuel histories are depicted in Fig. 11. In the present unconfined cases, 60-70% of the fuel had 
been consumed by 4 ms, and the slope of the fuel curves m(t) was becoming asymptotically 
small. In the previous calorimeter calculations, virtually all of the fuel had been consumed by 4 

                                                
18 Mean enstrophy is computed from: !(R

n
, t)

2 !
1

"V
!(R

n
,#,$) "!(R

n
,#,$)dV###  according to A3 
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ms —due to the continued stirring induced by shock reverberations in the chamber. This 
comparison suggests that there is a limit to how much air the unconfined spherical mixing layer 
can entrain before the turbulent velocity field dies (see Figs. 7b, c, d). For the stoichiometric 
requirements of the fuels considered (3.5!!

s
! 4 ), the mixing limitation has the effect of 

limiting fuel consumption to 60-70%. 
 
3.7 Turbulent Kinetic Energy 
 
We have analyzed the evolution of the turbulent velocity field in the combustion cloud. We start 
by defining the fluctuation velocity as a fluctuation about the mean radial velocity: 
 
     !u (x, t) " u(x, t)#u

r
(r, t)     (24) 

 
where the mean radial velocity u

r
(r, t)  was evaluated by the azimuthal-averaging procedure. 

Since the flow is compressible, we decompose the fluctuation velocity into rotational and 
dilatational components (see Batchelor [37]): 
 
     !u (x, t) = !u! (x, t)+ !u" (x, t)     (25) 
 
The rotational component depends on the vorticity field according to the Biot-Savart law: 
 

     !u! (x, t) =
"1

4!

s

s
# $ !! (x, t)dV (x)    (26) 

 
where the vorticity is derived from the fluctuation velocity according to !! " #$ !u , and 
s = x! x  and s = s . The rotational component is solenoidal: !" #u! = 0 . Similarly, the 
dilatational component depends on the dilatation field according to its Biot-Savart law: 
 

     !u" (x, t) =
1

4!

s

s
# !" (x, t)dV (x)    (27) 

 
where the dilatation is derived from the fluctuation velocity according to !" =#$ !u" . The 
dilatational component is irrotational: !" #u$ = 0 . Then one can define the fluctuating kinetic 
energy components: 
 

    FKE! =
1

2
( !u! )

2  and FKE! =
1

2
( "u! )

2   (28) 

 
 Based on the above decomposition, the Fourier transforms of FKE! (x, t)  and FKE! (x, t)  
were computed at different times. Results are plotted as the turbulent kinetic spectrum in Fig. 12. 
Initially, all the kinetic energy resides in radial velocity field: u

r
 of the blast wave (i.e., u ' = 0 ). 

By 50 µs  (Fig. 2a), fluctuations have started to grow on the TNT-air interface; they begin 
splitting into rotational and dilatational components (Fig. 12a) — with the dilatational 
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component being dominant. By 100 µs, the fluctuating kinetic energy has concentrated in the 
rotational component; thereafter the dilatational component is about 1 % of the rotational 
component. Both seem to preserve their spectrum as they decay (Fig. 12b). These results are 
reminiscent of the behavior of the solenoidal and compressional spectra predicted by Porter et al 
[38], [39] who performed gasdynamic simulations of decaying turbulence in a supersonic field, 
based on the PPM Godunov algorithm [24] (a relative of the Godunov scheme used in these 
simulations). For fundamental discussions of turbulence spectra see Kolmogorov [40] and the 
monograph by Zarkov, L’vov and Falkovich [41]. 
 
 Consider the global kinetic energy equation, as derived from the compressible Navier-
Stokes equation (derivation may be found in Appendix B): 
 

    d

dt
!KE = !u "#p!µ! 2

!
4

3
µ$2  ( t < 2ms )  (29) 

 
where µ represents the shear viscosity coefficient. From this one can see that the global kinetic 
energy decays because of the pressure field, the enstrophy: ! 2  and the dilatation: !2 . This 
relation becomes invalid when the shock wave runs off the grid (boundary integral terms would 
appear in eq. (29)); this happens at ~ 2 ms in this simulation. 
 
 Evolution of the global kinetic energy: KE(t), fluctuating kinetic energy: FKE(t) and 
enstrophy: ! 2  are presented in Fig. 13. Decay of the global kinetic energy is caused by the 
above noted mechanisms. The steep decay at 2 ms signals that the blast wave has exited the 
computational domain. The decay of the fluctuating kinetic energy is related to the energy 
cascade of the turbulent flow. It is explained qualitatively by second and third terms on the right-
hand side of eq. (29), where in our simulation, µ  would represent an effective numerical 
viscosity induced by the truncation terms in the Godunov algorithm. 
 
4. Summary and Conclusions 
 
1. Combustion occurs in thin flame sheets for the gaseous (TNT) combustion cloud, while a 
distributed mode of combustion is observed in the two-phase (Al) combustion cloud. 
 
2. Combustion is isobaric in these non-premixed systems. 
 
3. The spherical cloud geometry is ideal for studying turbulence properties of combustion in 
explosions. By using azimuthal averaging, one can extract all turbulence properties (mean 
profiles, rms profiles, turbulence spectra, etc.) from a single numerical simulation. In the present 
simulations the ensemble size was 105 samples per radial position; because of this large size, the 
profiles are very smooth. 
 
4. The so-evaluated Reynolds stress profiles were found to be dominated by the diagonal 
components—thereby indicating that turbulence is isotropic in spherical mixing layers. 
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5. Azimuthal averaging was also used to evaluate the evolution of the combustion zone in the 
cloud. Combustion started at the fuel-air interface and spread throughout the cloud due to the 
turbulent velocity field. 
 
6. Due to compressibility effects, the velocity field contained both  rotational and  dilatational 
components. 
 
7. Initially all the kinetic energy resided in the radial (dilatation) velocity component. By 50 µs , 
the fuel-air interface started to become unstable, and velocity fluctuations appeared. At that time, 
most of the fluctuating kinetic energy resided in the dilatational velocity field. By 100 µs , the 
fluctuating kinetic energy had evolved into the rotational velocity field; thereafter, the dilational 
kinetic energy was about 1 % of the rotational kinetic energy. 
 
8. Kinetic energy of the blast wave decayed due to the pressure field. 
 
9. The fluctuating (turbulent) kinetic energy decayed because of the enstrophy: ! 2 and dilatation: 
!
2  fields. 

 
10. The shape of the turbulence spectrum depends on the turbulent cascade process. In these 
simulations we use an implicit large eddy simulation approach in which dissipation at the fine 
scales is provided by the numerical dissipation in the second-order Godunov algorithm (see 
Aspden et al. [33] for details). 
 
Appendix A: Azimuthal Averaging 
 
 We take advantage of the point symmetry inherent in spherical blast waves and azimuthally 
average the flow field to extract the mean and rms profiles from the numerical solution. Recall 
that the flow field !(x, y, z, t)  is computed and stored at cell-centered points 

! 

P(x,y,z)  on a 
Eulerian grid. The points are transformed to points P(r,!,")  on a corresponding spherical grid, 
by the trigonometric formulas: 

        r = x
2
+ y

2
+ z

2
  &  ! =arccos(z / r )  &  " = arctan(x / y)  (A1) 

We consider spherical shell volume !V  at radius Rn  

    !V = (R
n
d" )(R

n
sin" d#)!!"# $

%!r = 4$Rn
2!r     (A2) 

A shell thickness equal to the mesh size is assumed (

! 

"r = # ). We denote computational cells 
located within this shell volume by P

n
(R

n
,!,")  and the corresponding flow field values by 

!
n
(R

n
,!,", t) . We then average the flow field at fixed 

! 

R
n
 to evaluate the mean field: 

Mean:   !(R
n
, t) =

1

!V (R
n
)

!(R
n
,",#, t)dV""" =

1

N
!

n

N

#  (A3) 
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The ensemble size:N = 4! (R
n
/!)

2 , is approximately 105 , except near the origin (see Table A1). 
Given the mean, one can then compute fluctuations about the mean: 

   !" (R
n
, t)

2
=

1

!V (R
n
)

["(R
n
, t)#"(R

n
, t)]

2
dV$$$ =

1

N
["

n
#"(R

n
, t)]

2

N

%  (A4) 

and root-mean-squared (rms) fluctuations 

rms:  !" (R
n
, t)

rms
= !" (R

n
, t)

2        (A5) 

These were used to construct the evolution of the mean and rms profiles of the combustion cloud. 
We note in passing that this azimuthal-averaging technique was first used by Kuhl [36] to 
analyze spherical mixing layers in TNT explosions. 

 
Table A1. Ensemble size versus radius (!

2
= 0.8mm ) 

R
n
(cm) N = 4! (R

n
/!)

2  

1 2000 

5 0.5!10
5  

10 2!10
5  

15 4.6!10
5  

20 8!10
5  

 
 
Appendix B: Global Kinetic Energy Equation for Viscous Compressible Flow 

 
The compressible Navier-Stokes equations may be written in the form: 
 

   !
t
"u+!"uu = "!p+µ!2

u+
1

3
µ!(#)     (B1) 

 
where ! " #$u = divu , !2

u = div(grad(u)) , µ  represents the coefficient of viscosity and 
assumes the Stokes hypothesis. Taking the inner product with u gives the compressible kinetic 
energy equation: 
 

   
!
t
!KE +"!KEu = #u $"p+µu $"2

u+
1

3
µu $"(%)    (B2) 

 
where  KE = u !u / 2 . Using vector calculus relations, one finds 
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dilatation function: u !"(#) = $#

2
+"! (u#)       (B3) 

 
dissipation function: u !"2

u = #! 2
#$

2
+"! (u$)+"! (u%!)     (B4) 

 
Inserting these into (B2), one finds the kinetic energy equation for compressible viscous flow: 
 

      
!
t
!KE +"#!KEu = $u #"p$µ! 2

$
4

3
µ%2 +

µ{"# (u&!)+
4

3
"# (u%)}

   (B5) 

 
Integrating over a spherical volume V(R) whose radius: R is greater than the spherical shock 
radius: Rs(t), all divergence terms are zero. Thus we find the evolution equation for the global 
(volume-averaged) kinetic energy: 
 

   
d

dt
!KE = !u "#p!µ! 2

!
4

3
µ$2

     (B6) 
 
Decompose the kinetic energy, based on the mean and fluctuating velocity components ur and u′: 
 

   KE !
1

2
u "u =

1

2
u
r
+u

r
#u +
1

2
#u " #u      (B7) 

 
Integrating over the same control volume V gives: 
 

   !KE =
1

V

1

2
! !u

r

2
dV +

1

V

1

2
! "u # "u dV! = !KE

BW
+ !FKE   (B8)19  

 
Decompose the fluctuating kinetic energy into rotational and dilatational components: 
 

   !FKE =
1

V

1

2
! !u '"u 'dV = !KE" + !KE#     (B9)20 

 

where !KE" =
1

V

1

2
! !u" " !u" dV#  and !KE! =

1

V

1

2
! "u! # "u! dV$ . Thus the global kinetic energy 

equation for compressible viscous flow may be written as: 
 

                                                
19 Since u

r
!u" dV = 0  

20 By orthogonality: u! '! "u '# dV = 0 (see eqs. 26 & 27) 
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    d

dt
!KEBW +

d

dt
!KE" +

d

dt
!KE! = "u #$p"µ!

2
"
4

3
µ!2   (B10) 

 
This provides insight into the decay of turbulent kinetic energy in compressible viscous flows. 
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(a) Reactants 

 
(b) Products 

 
 

Figure 1. Loci of thermodynamic states in the Le Chatelier plane of specific internal energy-temperature (
u!T plane ): (a) reactants (air, PETN, TNT, Al) at frozen compositon, (b) stoichiometric products (PETN-air, 
TNT-air, Al-air) in thermodynamic equibrium. 
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                      (a) TNT-air (t = 50 µs)                                    (d) Al-air (t = 50 µs) 

    

                          (b) TNT-air (t = 110 µs)                           (e) Al-air (t = 110 µs) 

    

                       (c) TNT-air (t = 410 µs)                                (f) Al-air (t = 410 µs) 

     

Figure 2. Cross-sectional view of the temperature field of spherical combustion clouds: frame a-c illustrate TNT-air 
combustion while frames d-f depict Al-air combustion (colors denote temperature — red: 3,000 < T < 4,000 K; 
yellow: T = 2,000 K; turquoise: T = 1,000 K). 
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(a) flow field 

 

(b) blow-up near front 

 

Figure 3. Exothermic flame sheet in the TNT-air combustion field (t = 100 µs). 
 

(a) TNT explosion in air 

 

(b) Al-SDF explosion in air 

 

Figure 4. Blast wave pressure distribution p(x, t =1ms)  along the x-axis at for explosions in air: (a) TNT 
explosion in air, (b) Al-SDF explosion in air. Notation: solid curve denotes combustion with air while dotted curve 
represents the no combustion case. 
 

(a) TNT-air combustion 

 

(b) Al-air combustion 

 

Figure 5. Blast wave pressure histories measured on the lid of calorimeter C for TNT and Al SDF charges; red 
curves represent combustion in air while blue curves represent the explosions in N2 [42]. 
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(a) mean density profiles 

 

(b) rms density profiles 

 

(c) mean temperature profiles 

 

(d) rms temperature profiles 

 

(e) mean pressure profiles 

 

(f) rms pressure profiles 

 

Figure 6. Evolution of the mean and rms thermodynamic profiles in the TNT combustion cloud. 
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(a) mean r-velocity profiles 

 

(b) rms r-velocity fluctuation profiles 

 

(c) rms φ-velocity fluctuation profiles 

 

(d) rms θ-velocity fluctuation profiles 

 

(e) Reynolds stress profiles (t = 0.65 ms) 

 

(f) mean enstrophy profiles 

 

Figure 7. Evolution of the mean and rms kinematics profiles in the TNT combustion cloud. 
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(a) t = 50 µs 

 

(d) t = 0.4 ms 

 

(b) t = 100 µs 

 

(e) t = 1 ms 

 

(c) t = 200 µs 

 

(f) t = 4 ms 

 

 

Figure 8. Evolution of the mean mass-fraction profiles Yk(r,t) in the combustion zone of the TNT cloud (Notation: D 
= PETN driver, DP = PETN-air combustion products, F = TNT fuel, CP = TNT-air combustion products, A = air). 
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(a) t = 50 µs 

 

(d) t = 0.4 ms 

 
(b) t = 100 µs 

 

(e) t = 1 ms 

 
(c) t = 200 µs 

 

(f) t = 4 ms 

 
 

Figure 9. Evolution of the mean mass-fraction profiles Yk(r,t) in the combustion zone of the Al-air cloud (Notation: 
D = PETN driver, DP = PETN-air combustion products, F = Al fuel, CP = Al-air combustion products, A = air). 
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(a) mean products-mass profiles 

 

(b) rms products-mass profiles 

 

(c) early-time products mass profiles 

 

(d) comparison of mean & rms profiles 

 

Figure 10. Evolution of the mean and rms profiles of the combustion Products mass in the TNT combustion cloud. 
 

(a) TNT-air combustion 

 

(b) Al-air combustion 

 

Figure 11. Fuel consumption over time: (a) TNT-air combustion; (b) Al-air combustion. 
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(a) early-time growth 

 
 

(b) decay 

 
 
Figure 12. Evolution of the Turbulent Kinetic Energy (TKE) spectrum in the TNT-air combustion cloud: (a) early-
time growth, (b) decay. Solid lines denote the rotational velocity component, dashed lines represent the dilatational 
velocity component. 
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Figure 13. Evolution of the global kinetic energy, fluctuating kinetic energy and enstrophy in the TNT explosion. 
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Problem 5: Kelvin-Helmholtz Mixing Layers2122 
 
 
 

 
  

                                                
21 A. L. Kuhl, K.Y. Chien, R. E. Ferguson, H. M. Glaz, P. Colella, Inviscid dynamics of unstable shear layers, 

RDA-TR-161604-006, August 1988, 94 pp. 
22 K-Y. Chien, R. E. Ferguson, A. L. Kuhl, H. M. Glaz, P. Colella, Inviscid dynamics of two-dimensional shear 

layers, Int. J. Computational Fluid Dynamics, 1995, 5 (1-2), p. 59-80. 
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Problem 6: Wall Mixing Layers 

 
 
 
 

6.1 Dusty Boundary Layer behind a Shock23 
 

Abstract 
 

A direct numerical simulation was made of the turbulent boundary layer formed by a 
planar shock propagating along a dusty wall. It differs from previous studies in two 
respects: (1) it follows the dynamic evolution of the unstable flow without resorting 
to turbulence modeling; (2) the entrainment of dust into the turbulent boundary layer 
is included as a part of the computational flow field, thus eliminating the need for a 
dust scouring model. The calculated mean-flow profiles, boundary layer growth and 
dust-scouring rate agree with shock tube measurements. In contrast with clean 
boundary layers, the turbulent fluctuations near the wall were larger than the mean 
values, as a consequence of the dust mass.  

 
1. Introduction 
 
 Dusty boundary layers are a common feature of shock interactions with realistic surfaces-
for example: explosions over soil or ground surfaces, shock wave propagation in coal mines, and 
industrial dust explosions. Direct theoretical predictions of such flow fields are extremely 
difficult because of the two-phase turbulent nature of the flow. In addition, wall boundary 
conditions (e.g.. dust scouring) are particularly intractable. Hence, many of the initial studies 
[1,2] were empirically based. Hartenbaum [2] measured the mean boundary layer profiles for 
steady flow over a dust bed, and deduced an empirical dust-scouring rate for flow velocities of 
30 to 120 m/s. More recently, Batt et al. [3] have measured the velocity and density profiles in 
the turbulent boundary layer behind a shock propagating along a dust bed. However, such non-
steady experiments can give only instantaneous point values at various distances behind the 
shock; mean-flow profiles and R.M.S. fluctuations cannot be obtained from such data.  
 
 Mirels4 has published analytic solutions for this problem, but he assumed the boundary 
layer profiles. Others have performed finite difference simulations: however, they used an 
empirical mass injection boundary condition on the wall and a model of the turbulence 
[5,6]. Since these models were developed for clean flow, and since the dust dramatically 
modifies the boundary layer, the adequacy of this approach is questionable.  
 

                                                
23 Kuhl, A. L., Chien, K.-Y., Ferguson, R. E., Collins, J. P., Glaz, H. M., & Colella, P. (1989) Simulation of a 

turbulent dusty boundary layer behind a shock. In Proceedings of the Seventeenth Int. Symposium of Shock Waves 
and Shock Tubes, Lehigh University, Bethlehem, PA, 17-21 July. Published in Current Topics in Shock Waves 
(ed. Y. W. Kim), AIP Conference Proceedings 208, American Institute of Physics, New York, NY, pp. 762-769, 
1990 (ISBN 0-88318-776-0) Also published as RDA-TR-0263229004-001, R & D Associates, Los Angeles, CA. 
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 This paper describes a direct numerical simulation of the turbulent boundary layer formed 
by a planar shock propagating along a dusty wall. It differs from previous studies in two 
respects: first. it follows the dynamic evolution of the unstable flow without resorting to 
turbulence modeling; second, the entrainment of dust into the turbulent boundary layer is 
included as part of the computational flow field, thus eliminating the need for a "dust scouring" 
model. The formulation of the calculation is described in the next section; this is followed by the 
results and a discussion that offers suggestions for accurate simulations of such dusty, turbulent 
flows.  
 
2. Formulation 
 
 Figure 1 depicts a planar shock propagating with constant velocity W

s
 along a dusty wall. 

In stationary coordinates (Fig. 1a), a boundary layer is formed behind the shock because of the 
no-slip condition on the wall. In addition, air percolates into the dust layer, forming a fluidized 
mixture of dust and air. For simplicity, the mixture was treated as a dense gas of 50 mg/cc, as 
inferred from experiments [3]. The specific case considered was that of an M

s
 = 1. 7 shock; the 

gasdynamic states behind the shock (normalized by the ambient conditions, state 1) are listed in 
Table 1. As in previous analytic studies [7], the analysis was performed in shock-fixed 
coordinates, (Fig. lb). In this coordinate system, the velocities vary from the value at the edge of 
the boundary layer, u

e
=W

s
!u

2
, to a maximum value on the wall, u

w
=W

s
. 

 
 The computational grid consisted of 500 fine cells in the x direction and 60 fine cells in 
the y direction; a few coarse zones were used above and to the right of the fine mesh to remove 
any effects of the computational boundaries. The grid was initialized with the appropriate states 
from Table 1 and the profiles depicted in Figure lc. The shear layer on the wall was 
approximated by a Tanh(y) function with proper asymptotes of u / a

1
=1.7  at y = 0 and 

u / a
1
= 0.77  at y = ! . The density profile consisted of a three-cell-thick fluidized bed (53 mg/cc) 

with shocked air above it. Note that the inflection point (IP) of the shear layer was located in the 
air, three cells above the fluidized bed (FB). The left-hand boundary of the grid was then driven 
by these same profiles (Fig. lc) with sinusoidal perturbations on the velocity field. Their 
frequencies corresponded to the frequency of maximum amplification rate from linear stability 
analysis and its first nine sub-harmonics. The maximum perturbation amplitude was 1 percent. A 
more complete description of this calculational approach may be found in Kuhl et al. [8]. 
 
 The dynamic evolution of the flow field was calculated by means of the high-order 
Godunov scheme of Colella and Glaz [9] that solves the two-dimensional (2-D), non-steady 
equations of gasdynamics. Since molecular transport effects are neglected, this approach 
represents a large-Reynolds-number approximation to the dynamics of the flow. (Note that the 
viscous no-slip condition on the wall is imposed in the in-flow boundary condition of the 
calculation.) The dust was assumed to be in velocity and temperature equilibrium with the air; 
thus the entire mixture was modeled as a perfect gas with a constant ratio of specific heats, 
! =1.4 . This "dense gas" (DG) model represents an equilibrium approximation that focuses on 
the inertia effects of the dust. The calculation was run for 6,000 cycles (~6 hours) on a Cray-
XMP to create a sufficient database for statistical analysis of the flow.  
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3. Results 
 
 Figure 2 depicts the location of the material interface of the fluidized bed. Figure 3 
presents the density (! ), internal energy (e), vorticity (! ), and pressure (p) contours near the 
end of the fine-zoned grid. These figures are useful for flow visualization in the boundary layer 
region. The shear layer in the air rolled up into large rotational structures that entrained material 
from the fluidized bed. Dense material from the fluidized bed formed long striations because of 
the flow field of the rotational structures of the turbulent boundary layer. Thus, the dust scouring 
occurred naturally in the calculation without any modeling.  
 
 Figure 4 depicts the boundary layer thickness !  (i.e., the height of the 99th percentile 
point of the mean velocity profile) as a function of distance behind the shock. The dusty 
boundary layer grows linearly with distance: ! = 0.24x , as a result of entrainment and merging 
of large-scale vortices. Note that this is in contrast to the clean boundary layer on a flat plate, 
which grows as the 0.8 power of distance from the leading edge: !! x0.8 .  
 
 The instantaneous flow field at the top of the fluidized bed ( y = y

0
) is presented in Figure  

5. The flow is clearly very chaotic—hence, useful representations of the flow require some type 
of averaging. To that end, the calculated environment was sampled for all y-cells at stations x = 
400. 600. 800, and 950 for each computational cycle. The mean-flow environment was then 
calculated from these station histories by integrating over the last 5,000 cycles.  
 
 The calculated mean density profiles are depicted in Figure 6a. The profiles become 
thicker with increasing distance from the shock because of turbulent convection. Near the wall 
all profiles converge to a density of about  (~ 17 mg/cc). This convergence point 
defines the calculated height of the fluidized bed:  = 3.5 cells. Only the flow field above  
was used in the boundary layer profiles; the solution below  was then considered to be part of 
the computational modeling of the dust scouring. Note that these calculated profiles are 
qualitatively similar to the measured dust density profiles [3]

 
shown in Figure 6b.  

 

 The mean-flow velocity: , specific volume: , and dynamic pressure:  
profiles are depicted in Figure 7 (subscript  denotes the freestream conditions above the 
boundary layer). Note that by using the boundary layer scaling , the calculated 
profiles collapse to a similarity profile, independent of distance behind the shock. Note also that 
the calculated profiles are consistent with the LDV and X-ray measurements (shaded regions in 
Fig. 7) over a soil bed of 10-  diameter loose dust (Batt et al. [3]). Near the wall, densities 
approach five to six times the free-stream value. This causes the velocities in the wall region to 
be small ( < 0.1). Hence, the velocity profile in the wall region seems to be dominated by 
inertia effects of the dust, and not by fluid viscosity. Note that this situation differs considerably 
from that of a turbulent boundary layer on a flat plate—where  0.5 in the law-of-the-wall 
region, and viscous effects play an important role. Using a control volume analysis of the fine-
grid region (with a bottom boundary at ) and the mean-flow profiles, the non-dimensional 
mass scouring rate was evaluated as .  
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 The root-mean-square (R.M.S.) fluctuations about the mean were also evaluated. These 
fluctuating-flow profiles are presented in Figure 8. The streamwise:  and transverse: 

velocity fluctuations peak at about 30 and 13 percent, respectively, and extend many 
boundary layer thicknesses from the wall. Thus, dust will be transported well above the mean 
boundary layer height. The turbulent Reynolds stress:  peaked at about -0.003, similar to 
other boundary layers. Density fluctuations:  peaked at about six times the freestream 
value because of turbulent entrainment of dense material from the fluidized bed. The static: 

 and dynamic  pressure fluctuations peaked at about 17 and 42 percent, respectively.  
 
 The local fluctuation-intensity profiles are presented in Figure 9. In constrast with clean 
boundary layers, turbulent velocity fluctuations were much larger than their mean values (e.g., 

 and ) because  is so small in the wall region. Hence, the fluctuations are 
the most important component of the flow. This seems to pose severe challenges for both 
experimentalists and turbulence modelers.  
 
 A high-order Godunov scheme has also been developed [10] for non-equilibrium gas-
dust mixtures. This solves the conservation of mass. momentum and energy for each phase, with 
drag and heat transfer interactions between phases. A non-equilibrium calculation of the dusty 
boundary layer behind a shock was run assuming very fine (  diameter) dust particles. The 
non-equilibrium mixture results (NE) are depicted by dashed curves in Figures 7 and 8. Both the 
mean and the R.M.S. profiles are essentially identical to the dense gas results. Surprisingly then, 
the dense gas approximation is quite an accurate model for this two-phase flow problem.  
 
4. Discussion and Conclusions 
 
 Dust lofting behind a shock can be viewed as a two-step process: (i) the formation of a 
fluidized bed, (ii) followed by entrainment of the dense material from the bed by the rotational 
structures of the turbulent boundary layer. The principal effect of the dust is to change the 
velocity of the flow. In the wall region, mean-flow velocities are small because dust densities are 
large. Also, turbulent velocity fluctuations in the wall region are much larger than the mean 
values due to this same effect.  
 
 The present calculations focus on the two most important physical processes in the 
turbulent boundary layer, namely, the non-steady velocity field of the large rotational structures, 
and the inertia effects of the dust. An accurate numerical simulation of these processes allows 
one to capture the first-order physical effects. For example, the velocity and density profiles, the 
dust scouring rate, and the boundary layer growth agree with the available data [3].

 
By inference 

then, non-equilibrium effects, fluid viscosity and three-dimensionality must have a secondary 
effect on the mean flow. Nevertheless, experimental data are needed to check the accuracy of the 
calculated R.M.S fluctuations.  
 
 This calculation vividly demonstrates the advantage of working in shock-fixed 
coordinates where the smooth or laminar solution is steady. By performing a non-steady 
calculation in these coordinates, one can not only capture the rotational structures of the 
turbulent flow, but also record time histories at fixed distances behind the shock. These can be 
used to determine both the mean and fluctuating flow profiles without resorting to turbulence 
modeling—the main limitation being the 2-D flow approximation. This approach represents a 
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significant advance over previous approaches that must assume turbulence properties—which are 
of course unknown for this dusty boundary layer flow.  
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Table 1. Flow Field States (M

s
=1.7, ! =1.4 ) 

 
 
 
 
 
 
 
 
  

COORDINATES    
FLOW FIELD    

          
STATIONARY       
State 1  1  1  1               1  0  0  
State 2  3.2  2.2  1.46        1.21  0.94  0.77  
SHOCK-FIXED       
    Edge ( ) 3.2  2.2  1.46         1.21  0.77  0.64  
  FB (  3.2  44  0.0727        0.270  1.7  6.3  
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6.2 Dense Gas Mixing Layer24 
 

Abstract 
 

Described here are experiments and calculations of the interaction of a planar shock 
with a dense-gas layer located on the floor of the shock tube test section. The shock 
front deposited vorticity in the layer by the baroclinic mechanism. The wall shear 
layer was unstable and rapidly evolved into a turbulent boundary layer with a wide 
spectrum of mixing scales. Density effects dominated the dynamics in the wall 
region.  

 
1. Introduction  
 
 Shock interactions with density discontinuities provide a rich source of fluid-dynamic 
phenomena. For example, normal shock interactions with planar density interfaces lead to 
instabilities and turbulent mixing at the interface, as studied by Richtmyer [6] and Meshkov [5]. 
Planar shock interactions with inclined density interfaces lead to a spectrum of shock refraction 
effects as shown in the shock tube experiments of Fattah et al. [3], and to the rollup of the 
interface as demonstrated by the calculations of Zabusky et al. [8]. Planar shock interactions with 
low density layers located along the wall create shock precursor effects. This leads to a turbulent 
wall jet as shown in the shock tube experiments of Reichenbach and Kuhl [7]. In these examples, 
the shock interaction with the interface creates vorticity by a baroclinic mechanism: !p"!! . 
This shear layer is hydrodynamically unstable, and rapidly evolves into a turbulent mixmg region.  
 
 Considered here is a new class of such problems, which can be used to study turbulent 
mixing in boundary layers that are dominated by density effects -in contrast with classical 
boundary layers that are dominated by viscous effects. In this respect, the current problem can be 
considered as a boundary layer version of the classic free shear layer experiments by Brown and 
Roshko [1]. The problem consists of the interaction of a planar sho.ck wave with a Freon layer 
located along the floor of the test section of a shock tube. Shock interactions with the density 
interface create a wall shear layer that rapidly rolls up into a turbulent boundary layer. Described 
here are shock tube experiments and direct numerical simulations of this problem.  
 
2. Problem Description  
 
 Experiments were performed in the Ernst Mach Institut shock tube. Figure 1 shows a 
schematic of the test section which had an effective rectangular cross-sectional area of 7.5 cm by 
4 cm. The wall layer was created by means of a fixture that was inserted into the shock tube. It 
contained a plenum for the injected gas, covered by a 65 cm-long porous ceramic plate 
(Filtrokelit) that spanned the 4 cm width of the shock tube. The plenum was filled with Freon-12 
at a pressure of !p

F
" 0.5  bars and run fore about one minute—to achieve essentially 100 

percent Freon concentration in the plenum, and to cleanse the pores of the ceramic plate of 

                                                
24 Kuhl, A. L., Reichenbach, H. & Ferguson, R. E., (1991) Shock interactions with a dense-gas wall layer, presented 

at the Eighteenth Int. Symposium on Shock Waves, 21-26 July 1991, Sendai, Japan. Published in Shock Waves: 
Proceedings of Eighteenth Int. Symposium on Shock Waves (K. Takayama Ed.) Springer, Berlin pp. 159-166. 
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residual air. Next, the Freon valve VF was closed and the shock tube was purged of contaminated 
gases. Then the Freon valve was opened and the plenum was pressurized to !p

F
=1.5  bars for a  

time !t
F

 (typically 2 seconds) and then the shock tube diaphragm was broken mechanically. To 
increase the reproducibility of the experiments, all filling procedures were computer controlled.  
 
 This procedure created a thin layer (~ 0.3 cm) of pure Freon-12 on the floor of the test 
section. Above this, the Freon concentration decreased gradually in a thicker (~ 1.5 cm) diffusion 
layer. This was caused by residual air pollution in the pores of the ceramic plate, and by bi-
molecular diffusion processes. The resulting layer was a 2 cm-thick by 65 cm-long laminar layer 
of Freon whose concentration profile was independent of x. The layer could be controlled by the 
Freon plenum pressure !p

F
 and duration !t

F
; best results were achieved with !p

F
 = 1.5 bars 

and !t
F

 = 2 seconds.  
 
 High-speed photography was used as the primary flow field diagnostic—to make visible 
the turbulent mixing processes occurring in the wall layer. It consisted of 24 sequential frames of 
shadow-schlieren photographs that were recorded by EMI's Cranz-Schardin camera. In addition, 
Mach-Zhender interferometry was used to evaluate the pre-shock density profile of the Freon 
layer.  
 
 Figure 2 shows a schematic of the computational domain that was used for numerical 
simulations of the experiments. A rectangular x-y Cartesian grid of 150 cells by 600 cells was 
employed. The mesh spacing was uniform with !x = !y = 0.05  cm. The grid was initialized with 
a quiescent air atmosphere: !

1
=1.223!10

"3
g / cm

3 , p
1
= 1 atm and u

1
= v

1
= 0 . The Freon layer 

was then modeled by a Tanh(y)  profile, which approached the Freon density on the wall 
!
F
= 4!

1
. The left boundary of the grid was fed with constant conditions corresponding to the 

state behind a M
I
=1.38  shock wave: !

2
=1.65!!

1
, p

2
= 2.06! p

1
and u

2
=1.86!10

4
 cm / s .  

Outflow boundary conditions were used on the right boundary. The roof and floor were treated 
as inviscid (slip) walls. Both the air and the Freon were modeled as an ideal gas with ! =1.4 .  
 
3. Experimental Results  
 
 Figure 3 presents a sequence of photographs showing the interaction of a M

I
=1.38  air 

shock with a Freon layer. The pre-shock structure of the layer is visible in the first frame. The 
white band along the floor consists of pure Freon, about 0.3 cm thick. The black band above it is 
the aforementioned diffusion layer, where the Freon concentration gradually decreases to zero. 
The complete layer is about 2 cm thick in this experiment.  
 
 The sound speed in the layer was smaller than that in the air above it, hence the shock 
propagation was retarded in the layer. This caused the shock front to be curved near the floor. 
The oblique shock compressed the layer and reflected from the floor as a regular-reflection shock 
structure. The reflected shock reflected off the layer interface as a rarefaction wave, which 
stopped the compression of the layer. The rarefaction wave reflected back and forth within the 
layer, causing periodic accretions and depletions of density. These effects are clearer in the 
numerical simulation presented in the next section.  
 
 By about 10 cm behind the shock, the wave dynamics effects had damped out, and 
mixing processes began to dominate. Figure 3 shows that the flow was very unstable, and for 
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!t " 0.35ms , it rapidly evolved into a turbulent mixing layer—even in these small-scale 
experiments. Although the flow was no doubt three-dimensional, one can occasionally identify 
large-scale structures (e.g., !t = 0.85ms and 0.95ms ) that entrain Freon from the wall layer. 
These structures created density striations that point up and to the right at an angle of about 30 
degrees from the floor. Similar striation effects are found in the numerical simulations. One can 
also observe fine-scale structures, especially near the top of the layer.  
 
4. Numerical Simulations  
 
 A numerical simulation of the preceding experiment was also performed. As an 
approximation, it was assumed that the flow was two-dimensional and inviscid. Hence, its 
dynamics were governed by the mass, momentum and energy conservation laws of gas dynamics. 
These were solved numerically by the high-order Godunov scheme of Colella and Glaz [2]. The 
computational setup was shown in Figure 2.  
 
 Figure 4 presents contour plots that show the initial shock interaction with the wall layer. 
The pressure contours show the refraction of the shock front in the layer, the reflection at the 
floor, and the formation of periodic expansion and compression waves in the layer. The internal 
energy contours show the periodic compaction (x = 61 cm and 71 cm) and expansion (x = 66 cm) 
of the surface. The vorticity contours show that vorticity is generated at the point where the 
shock interacts with the layer interface. The Freon concentration contours show that the interface 
begins to rollup almost immediately behind the shock front. At distances greater than about 10 
cm behind the shock (x < 61 cm in Fig. 4), the rotational structures pair and merge into larger-
scale structures.  
 
 Figure 5 depicts flow field contours at !t = 0.5  ms after shock passage at x = 70 cm.  
They show an intense mixing with a spectrum of length scales. As is characteristic of variable-
density flows, the vorticity contours show that counter-sign vorticity (solid lines) are 
baroclinically generated in the braid region between rotational structures. Peak values are about -
0.5 times the peak value of the vorticity of the main flow. The counter-sign vorticity, of course, 
increases the complexity of the mixing. The tendency in these two-dimensional calculations is to 
form multiple merging of vortices. At later times, this tendency leads to predominantly large-
scale structures. In three-dimensional flow, however, vortex stretching and tangling will maintain 
the fine-scales within the large structures—as is evident in the photographs of Figure 3. Future 
calculations should include the three-dimensional effects.  
 
 The flow field was sampled at station x = 70 cm, and time-averaged profiles in the wall 
layer were evaluated. The mean flow profiles are presented in Figure 6. Flow variables were 
non-dimensionalized by the free-stream values, denoted by subscript ! . The profiles are 
qualitatively similar to our previous simulations of the dusty boundary layer behind a shock [4]. 
The streamwise velocity profile indicates that the layer remained about 2 cm thick during this 
time period—thus eliminating the need for self-similarly stretching the grid to account for 
growth of the layer. Density effects cause the velocity to decrease to u = 0.2U!  at the floor; if 
viscous effects were included in the laminar sub-layer, then the velocity would go to zero at y = 0. 
In accordance with the negative displacement effect of shock-induced boundary layers, the mean 
transverse velocities are negative in the layer and reach a peak value of v = !0.035U" . The mean 
density reaches a peak value of about ! = 3.8!!  because of the Freon near the floor; hence, this 
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mixing layer is strongly influenced by density effects. The mean pressure is essentially constant 
throughout the layer. 
 
 Figure 7 presents the corresponding fluctuating flow profiles. Again, these profiles are 
qualitatively similar to our dusty boundary layer simulations [4]. The streamwise velocity 
fluctuations peak at a value of !u = 0.31U" , which is typical of boundary layers. The transverse 
velocity fluctuations peak at a value of !v = 0.26U" : this is probably too large by a factor of 
two—due to the two-dimensional flow approximation. The Reynolds stress !u !v  is positive, 
indicating that mixing is feeding fluctuating kinetic energy back into the mean flow; peak values 
reach !u !v = 0.0075U"

2 .  Density fluctuations are of order 100 percent, due to the Freon. 
Fluctuations in dynamic pressure and stagnation pressure are also large (e.g., 50 percent) near the 
floor.  
 
5. Conclusions  
 
 Shock interactions with a dense-gas layer create a shear layer on the wall by an inviscid 
(i.e., baroclinic) mechanism. The wall shear layer is unstable, and rapidly rolls up into a three-
dimensional, turbulent mixing layer with a variety of mixing scales. One of the most interesting 
features of this problem is that it provides a method for studying high-Reynolds number, 
turbulent wall layers that are dominated by baroclinically-generated vorticity and density 
effects—in contrast with classical boundary layers that are dominated by viscous effects. This 
problem also provides a gasdynamic simulation of turbulent dusty boundary layers if the dust 
particle diameters are very small. Measurements of both the mean and fluctuating flow profiles 
of this mixing layer should be performed to check the present numerical predictions.  
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7. Height of Burst Curves 

 
7.1 HOB curves from 1-g Nitropenta charges25 
 

 
 
 
  

                                                
25 Reichenbach, H. & Kuhl, A. (1991) HOB curves for 0.5-g NP charges, DNA-TR-90-223, Defense Nuclear 

Agency, Alexandria, VA, 38 pp. 
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7.2 HOB curves from 8-lb PBX9404 charges26 
 

 
 
  

                                                
26 H. J. Carpenter, D. J. Michalski, Eight-lb PBX9404 HOB Experiments, Volume 1: Experimental Description and 
Data Analysis, DNA-TR-94-129-V1, Defense Nuclear Agency, 1995. 
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7.3 Nuclear HOB Curves for Ideal Surfaces22 
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Summary and Conclusions 

 
1. Radiation-Hydrodynamic Wave 
If one considers explosion effects close to a nuclear weapon (R ! 8m /KT

1/3
,  t ! 0.1ms /KT

1/3 ), 
the flow field must be calculated with a radiation hydrodynamics code. Simulations of a free-air 
burst should be performed and compared with Brode’s solution based on a radiation diffusion 
model (RM-2248). 
 
2. Blast Waves from Nuclear Explosions 
The hydrodynamic range of the explosion starts when the bomb case shock overtakes the 
radiation diffusion front ( R = 8m /KT

1/3
 and t = 0.1ms /KT

1/3 ). At this point, the blast wave can 
be calculated with a gasdynamics code27. The computational grid can be initialized by the point 
source similarity solution applied at a convenient point along the free air curve. The domain must 
be initialized by a realistic atmospheric structure (U.S. Standard 1962 Atmosphere, or 
atmosphere measured on a specific test event). Results presented in Problem 1 can be used to 
check the accuracy of numerical simulations of unconfined nuclear explosions; the free air curve 
serves as the standard measure. 
 
3. Blast Wave Reflections from Ideal Surfaces 
The ability of a code to calculate flow fields behind reflected shocks can be checked by 
performing numerical simulations of shock reflections from wedges. Three cases were proposed 
(corresponding to regular reflection, Mach reflection and double-Mach reflection), but there are 
12 other cases available. The ability of a code to accurately predict reflected blast wave pressures 
in the high-pressure regime can be verified by numerical simulations of the 8-lb charge 
experiments of Carpenter (DNA-TR-94-129). One case was proposed (HOB = 51.66cm ), but 
data from 12 other heights of burst are available. 
 
4. Blast Wave Reflections from Ground Surfaces 
The principal difference between blast waves from nuclear explosions and blast waves from HE 
charges is the existence of the Precursor Regime. Thermal radiation from the nuclear fireball 
creates a hot thermal layer on the ground surface. The shock front runs faster in the thermal layer, 
leading to a precursor shock structure with an embedded wall jet. This wall jet scours dust from 
the surface, forming a turbulent wall jet flow. The stagnation pressure in the wall jet can be an 
order of magnitude larger than the corresponding ideal surface case (see Fig. 4 of the 
Introduction). Based on experimental data described in EM-1, the precursor regime is: 
HOB <~ 700 ft

1/3
 and GR <~ 1100 ft /KT

1/3 . To compute the flow field above the surface in the 
precursor regime, one must model the thermal layer, turbulent wall jet and dusty boundary layer 
flow; the models described in Problem 3 (with the iLES model of turbulence) are recommended. 
If one is outside the precursor regime (i.e., HOB > 700 ft /KT1/3  or GR >1100 ft /KT1/3 ), one can 
treat the surface as ideal and model it with gasdynamic code simulations. 
 

                                                
27 As the fireball temperature drops due to adiabatic expansion, internal energy re-distribution occurs by convective 
flow, which is faster than radiation diffusion, and a gasdynamic model is adequate. 
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5. Spherical Mixing Layers 
The turbulence fields have been studied by iLES simulations of turbulent combustion clouds. 
Taking advantage of the point symmetry of the problem, the flow fields were azimuthally 
averaged to extract the mean and rms profiles of thermodynamic and kinematic variables, the 
mixing layer profiles and the evolution of the turbulent kinetic energy spectra. These results can 
be used to construct models of spherical mixing layers in explosions. And they can be used to 
check the accuracy of existing turbulence models ( k !! , etc.) to predict turbulent mixing layers 
in explosions. 
 
6. Kelvin-Helmholtz Mixing Layers 
To check the ability of hydro codes to simulate slip lines and shear layers embedded in 
explosions, four free shear layer problems were proposed. These correspond to the seminal 
experiments of Brown & Roshko (1974) and Oster & Wignanski (1982). Such flows are 
dominated by the rotational velocity component whose simulation can be problematic for 
Lagrangian-based numerical algorithms. Both two-dimensional and three-dimensional 
simulations are recommended. 
 
7. Wall Mixing Layers 
For explosions over ground surfaces, one must model the entrainment and mixing of the dust 
from the surface. An iLES approach was recommended in Problem 6—whereby the dust is 
entrained and transported by the rotational structures of the turbulent boundary layer flow. The 
ability to model the turbulent boundary layer flow is crucial to predicting loads on above ground 
structures—especially in the precursor regime. 
 
8. HOB Curves 
Height-of-burst curves are often used in targeting applications, for example, to select the HOB to 
maximize the damage radius for a selected overpressure. If one is interested in the high-pressure 
(precursor) regime, one needs HOB curves based on stagnation pressure impulse (which do not 
now exist). If one is interested in the low-pressure regime (!p

s
<15 psi ), HOB curves for ideal 

surfaces are sufficient.  
 
9. Parametric Studies 
Structural response of above ground structures is proportional to the stagnation pressure impulse. 
To compute loads in the precursor regime, one needs the stagnation pressure histories as a 
function of: (i) height above the surface, (ii) ground range and (iii) height of burst. Such flow 
fields can be computed with the models described in Problem 3. A computational matrix is 
suggested in Table 1. Results can be checked against data from nuclear test events. The flow 
fields can also be used to initialize numerical simulations of dust clouds from nuclear explosions, 
to be performed with our low-Mach number AMR code. 
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Table 1. Computational Matrix for Simulating Nuclear Events 
 

Case 
 

US Test Events  
HOB* 

(ft) 
SHOB 

( ) 
1 Small Boy/Little Feller surface 0 
2 Trinity (19 KT) 100T 37 
3 UPSHOT KNOTHOLE-Simon (43 KT) 300T 81 
3’ UPSHOT KNOTHOLE-Badger (23 KT) 300T 106 
4 TEAPOT-Met (22 KT) 300T 137 
5 PLUMBBOB-Priscilla (37 KT) 700B 200 
6 Tsar Bomba (58 MT) 10/30/61 12,000 312 
7 UPSHOT KNOTHOLE-Climax (61 KT) 1,334 322 
8 PLUMBBOB-Hood (74 KT) 1,500 340 
9 PLUMBBOB-Stokes (19 KT) 1,500 533 
10 Nagasaki (~22 KT) 1,640 585 
11 PLUMBBOB-Charleston (12 KT) 1,500 621 
12 UPSHOT KNOTHOLE-Encore (27 KT) 2,425 766 
13 Hiroshima (~12 KT) 1,850 808 
14 TUMBLER SNAPPER-Charlie (31 KT) 3,447 1040 
15 UPSHOT KNOTHOLE-Dixie (11 KT) 6,020 2,564 

* Samuel Glasstone, Editor, The Effects of Nuclear Weapons, U. S. AEC, 1962, 730 pp. 
T = tower shot, B = balloon shot 
 
 
 

ft /KT
1/3
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Recommendations 
 
1. Test Problems 
Problems 1-6 should be added to the official suite of test problems used to check hydro-codes 
developed in A and B Programs. 
 
2. Radiation-Hydrodynamic Wave 
The radiation-hydrodynamic wave from a nuclear charge should be computed with LLNL codes. 
Results should be compared with Brode’s numerical simulation (RM-2248). 
 
3. Reflections from Ideal Surfaces 
The ability of AX Division codes to accurately predict reflections from ideal surfaces should be 
checked by performing shock reflections from wedges and blast wave reflections from an ideal 
surface—as described in Problem 2. 
 
4. Spherical Mixing Layers 
The solution of the turbulent flow field presented in Problem 4 should be used to construct and 
validate turbulent mixing models for spherical explosion fields. 
 
5. Shear Layers 
The ability of AX Division hydro codes (and/or turbulence models) to accurately predict 
turbulent mixing in free shear layers should be verified by simulations of the four cases 
presented in Problem 5. 
 
6. Stagnation Pressure HOB Curves 
To define the blast loads in the high-pressure regime, a set of numerical simulations of nuclear 
explosions over ground surfaces should be performed with the models described in Problem 3. 
Heights of burst should include cases 2-10 identified in Table 1. The flow fields will be analyzed 
to produce stagnation pressure impulses as a function of ground range, height above the surface 
and HOB. 
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Proposal 1: 
Modeling Spherical Mixing in Explosion Fields 

 
The turbulence fields in spherical combustion clouds have been studied by iLES simulations of 
the explosion of a spherical TNT charge (Problem 4). Taking advantage of the point symmetry of 
the problem, the flow fields were azimuthally averaged to extract the mean and rms profiles of 
thermodynamic and kinematic variables, the mixing layer profiles and the evolution of the 
turbulent kinetic energy and its spectrum. These results will be used to construct models of 
spherical mixing layers in explosions. And they can be used to check the accuracy of existing 
turbulence models ( , etc.) to predict turbulent mixing layers in explosions. 

 
k !!
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Proposal 2: 

Parametric Studies of Turbulent Mixing  
in Nuclear Explosions over Ground Surfaces 

 
Numerical simulations of the flow field created by nuclear explosions over ground surfaces will 
be performed with our AMR explosion code (AMR-EC). The code uses the iLES (implicit 
Large-Eddy Simulation) approach to capture the energy-bearing scales of turbulence on the 
computational grid, so no turbulence modeling is needed. Adaptive Mesh Refinement (AMR) is 
used to follow the evolution of turbulent mixing regions in the flow. The code contains empirical 
models of the thermal layer and fluidized bed, needed to model the turbulent wall jet and dusty 
boundary layer flow from first principles (i.e., vorticity in the boundary layer entrains dust from 
the fluidized bed and distributes it throughout the flow via turbulent mixing). Eleven heights of 
burst in the precursor regime will be studied: 

• HOB = 0 ft /KT
1/3  (Small Boy/Little Feller) 

• HOB = 37 ft /KT
1/3  (Event Trinity) 

• HOB = 81 ft /KT
1/3  (UPSHOT KNOTHOE-Simon) 

• HOB =106 ft /KT
1/3  (UPSHOT KNOTHOLE-Badger) 

• HOB =137 ft /KT
1/3  (TEAPOT-Met) 

• HOB = 200 ft /KT
1/3  (PLUMBBOB-Priscilla) 

• HOB = 322 ft /KT
1/3  (UPSHOT KNOTHOE-Climax) 

• HOB = 533 ft /KT
1/3  (PLUMBBOB-Stokes) 

• HOB = 621 ft /KT
1/3  (PLUMBBOB-Charleston) 

• HOB = 766 ft /KT
1/3  (UPSHOT KNOTHOE-Encore) 

• HOB =1040 ft /KT
1/3  (TUMBLER SNAPPER-Charlie) 

The results will be analyzed to determine the stagnation pressure history and positive phase 
impulse as a function of: (i) height above the surface, (ii) ground range and (iii) height of burst. 
Results can be checked against data from nuclear test events. The flow fields can also be used to 
initialize numerical simulations of dust clouds from nuclear explosions, to be performed with our 
low-Mach number AMR code. 
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Proposal 3: 
V&V of Shock Hydrodynamics Codes 

 
1. Radiation-Hydrodynamic Wave (V&V) 
The radiation-hydrodynamic wave from a nuclear charge should be computed with LLNL codes. 
Results should be compared with Brode’s numerical simulation (RM-2248). 
 
2. Reflections from Ideal Surfaces (V&V) 
The ability of AX Division codes to accurately predict reflections from ideal surfaces should be 
checked by performing shock reflections from wedges and blast wave reflections from an ideal 
surface, as described in Problem 2. 
 
3. Kelvin-Helmholtz Mixing Layers 
To check the ability of hydro codes to simulate shear layers embedded in explosions, four free 
shear layer problems were proposed. These correspond to the seminal experiments of Brown & 
Roshko (1974) and Oster & Wignanski (1982). Such flows are dominated by the rotational 
velocity component whose simulation can be problematic for Lagrangian-based numerical 
algorithms. Both two-dimensional and three-dimensional simulations are recommended. 
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